| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc4i | Structured version Visualization version GIF version | ||
| Description: Inference version of axc4 2321. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| axc4i.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| axc4i | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2151 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | axc4i.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 3 | 1, 2 | alrimi 2213 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: hbae 2436 hbsb2 2487 hbsb2a 2489 hbsb2e 2491 reu6 3732 ralidm 4512 axunndlem1 10635 axacndlem3 10649 axacndlem5 10651 axacnd 10652 bj-nfs1t 36791 bj-hbs1 36813 bj-hbsb2av 36815 bj-hbaeb2 36819 wl-hbae1 37520 frege93 43969 spALT 44214 pm11.57 44408 pm11.59 44410 axc5c4c711toc7 44423 axc11next 44425 hbalg 44575 ax6e2eq 44577 ax6e2eqVD 44927 ichnfimlem 47450 |
| Copyright terms: Public domain | W3C validator |