![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc4i | Structured version Visualization version GIF version |
Description: Inference version of axc4 2305. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
axc4i.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
Ref | Expression |
---|---|
axc4i | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2123 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | axc4i.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
3 | 1, 2 | alrimi 2180 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-10 2114 ax-12 2143 |
This theorem depends on definitions: df-bi 208 df-or 843 df-ex 1766 df-nf 1770 |
This theorem is referenced by: hbae 2412 hbsb2 2477 hbsb2a 2479 hbsb2e 2481 hbsb2ALT 2555 reu6 3656 axunndlem1 9870 axacndlem3 9884 axacndlem5 9886 axacnd 9887 bj-nfs1t 33662 bj-hbs1 33690 bj-hbsb2av 33692 bj-hbaeb2 33717 wl-hbae1 34313 frege93 39808 spALT 40061 pm11.57 40280 pm11.59 40282 axc5c4c711toc7 40295 axc11next 40297 hbalg 40449 ax6e2eq 40451 ax6e2eqVD 40801 |
Copyright terms: Public domain | W3C validator |