Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axc4i | Structured version Visualization version GIF version |
Description: Inference version of axc4 2318. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
axc4i.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
Ref | Expression |
---|---|
axc4i | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2151 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | axc4i.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
3 | 1, 2 | alrimi 2209 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1786 df-nf 1790 |
This theorem is referenced by: hbae 2432 hbsb2 2487 hbsb2a 2489 hbsb2e 2491 nfabdwOLD 2932 reu6 3664 ralidm 4447 axunndlem1 10335 axacndlem3 10349 axacndlem5 10351 axacnd 10352 bj-nfs1t 34951 bj-hbs1 34973 bj-hbsb2av 34975 bj-hbaeb2 34980 wl-hbae1 35657 frege93 41517 spALT 41765 pm11.57 41960 pm11.59 41962 axc5c4c711toc7 41975 axc11next 41977 hbalg 42128 ax6e2eq 42130 ax6e2eqVD 42480 ichnfimlem 44867 |
Copyright terms: Public domain | W3C validator |