MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc4i Structured version   Visualization version   GIF version

Theorem axc4i 2306
Description: Inference version of axc4 2305. (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
axc4i.1 (∀𝑥𝜑𝜓)
Assertion
Ref Expression
axc4i (∀𝑥𝜑 → ∀𝑥𝜓)

Proof of Theorem axc4i
StepHypRef Expression
1 nfa1 2123 . 2 𝑥𝑥𝜑
2 axc4i.1 . 2 (∀𝑥𝜑𝜓)
31, 2alrimi 2180 1 (∀𝑥𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-10 2114  ax-12 2143
This theorem depends on definitions:  df-bi 208  df-or 843  df-ex 1766  df-nf 1770
This theorem is referenced by:  hbae  2412  hbsb2  2477  hbsb2a  2479  hbsb2e  2481  hbsb2ALT  2555  reu6  3656  axunndlem1  9870  axacndlem3  9884  axacndlem5  9886  axacnd  9887  bj-nfs1t  33662  bj-hbs1  33690  bj-hbsb2av  33692  bj-hbaeb2  33717  wl-hbae1  34313  frege93  39808  spALT  40061  pm11.57  40280  pm11.59  40282  axc5c4c711toc7  40295  axc11next  40297  hbalg  40449  ax6e2eq  40451  ax6e2eqVD  40801
  Copyright terms: Public domain W3C validator