![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc4i | Structured version Visualization version GIF version |
Description: Inference version of axc4 2325. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
axc4i.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
Ref | Expression |
---|---|
axc4i | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2152 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | axc4i.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
3 | 1, 2 | alrimi 2214 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: hbae 2439 hbsb2 2490 hbsb2a 2492 hbsb2e 2494 nfabdwOLD 2933 reu6 3748 ralidm 4535 axunndlem1 10664 axacndlem3 10678 axacndlem5 10680 axacnd 10681 bj-nfs1t 36756 bj-hbs1 36778 bj-hbsb2av 36780 bj-hbaeb2 36784 wl-hbae1 37473 frege93 43918 spALT 44163 pm11.57 44358 pm11.59 44360 axc5c4c711toc7 44373 axc11next 44375 hbalg 44526 ax6e2eq 44528 ax6e2eqVD 44878 ichnfimlem 47337 |
Copyright terms: Public domain | W3C validator |