| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc4i | Structured version Visualization version GIF version | ||
| Description: Inference version of axc4 2322. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| axc4i.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| axc4i | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2154 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | axc4i.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 3 | 1, 2 | alrimi 2216 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: hbae 2431 hbsb2 2482 hbsb2a 2484 hbsb2e 2486 reu6 3685 ralidm 4462 axunndlem1 10486 axacndlem3 10500 axacndlem5 10502 axacnd 10503 bj-nfs1t 36830 bj-hbs1 36852 bj-hbsb2av 36854 bj-hbaeb2 36858 wl-hbae1 37559 frege93 43995 spALT 44240 pm11.57 44428 pm11.59 44430 axc5c4c711toc7 44443 axc11next 44445 hbalg 44594 ax6e2eq 44596 ax6e2eqVD 44945 ichnfimlem 47500 |
| Copyright terms: Public domain | W3C validator |