MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc4i Structured version   Visualization version   GIF version

Theorem axc4i 2316
Description: Inference version of axc4 2315. (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
axc4i.1 (∀𝑥𝜑𝜓)
Assertion
Ref Expression
axc4i (∀𝑥𝜑 → ∀𝑥𝜓)

Proof of Theorem axc4i
StepHypRef Expression
1 nfa1 2149 . 2 𝑥𝑥𝜑
2 axc4i.1 . 2 (∀𝑥𝜑𝜓)
31, 2alrimi 2207 1 (∀𝑥𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2138  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-or 847  df-ex 1783  df-nf 1787
This theorem is referenced by:  hbae  2431  hbsb2  2482  hbsb2a  2484  hbsb2e  2486  nfabdwOLD  2928  reu6  3723  ralidm  4512  axunndlem1  10590  axacndlem3  10604  axacndlem5  10606  axacnd  10607  bj-nfs1t  35668  bj-hbs1  35690  bj-hbsb2av  35692  bj-hbaeb2  35696  wl-hbae1  36388  frege93  42707  spALT  42953  pm11.57  43148  pm11.59  43150  axc5c4c711toc7  43163  axc11next  43165  hbalg  43316  ax6e2eq  43318  ax6e2eqVD  43668  ichnfimlem  46131
  Copyright terms: Public domain W3C validator