MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc4i Structured version   Visualization version   GIF version

Theorem axc4i 2320
Description: Inference version of axc4 2319. (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
axc4i.1 (∀𝑥𝜑𝜓)
Assertion
Ref Expression
axc4i (∀𝑥𝜑 → ∀𝑥𝜓)

Proof of Theorem axc4i
StepHypRef Expression
1 nfa1 2148 . 2 𝑥𝑥𝜑
2 axc4i.1 . 2 (∀𝑥𝜑𝜓)
31, 2alrimi 2210 1 (∀𝑥𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-10 2138  ax-12 2174
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1776  df-nf 1780
This theorem is referenced by:  hbae  2433  hbsb2  2484  hbsb2a  2486  hbsb2e  2488  reu6  3734  ralidm  4517  axunndlem1  10632  axacndlem3  10646  axacndlem5  10648  axacnd  10649  bj-nfs1t  36772  bj-hbs1  36794  bj-hbsb2av  36796  bj-hbaeb2  36800  wl-hbae1  37499  frege93  43945  spALT  44190  pm11.57  44384  pm11.59  44386  axc5c4c711toc7  44399  axc11next  44401  hbalg  44552  ax6e2eq  44554  ax6e2eqVD  44904  ichnfimlem  47387
  Copyright terms: Public domain W3C validator