MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc4i Structured version   Visualization version   GIF version

Theorem axc4i 2321
Description: Inference version of axc4 2320. (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
axc4i.1 (∀𝑥𝜑𝜓)
Assertion
Ref Expression
axc4i (∀𝑥𝜑 → ∀𝑥𝜓)

Proof of Theorem axc4i
StepHypRef Expression
1 nfa1 2152 . 2 𝑥𝑥𝜑
2 axc4i.1 . 2 (∀𝑥𝜑𝜓)
31, 2alrimi 2214 1 (∀𝑥𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  hbae  2430  hbsb2  2481  hbsb2a  2483  hbsb2e  2485  reu6  3700  ralidm  4478  axunndlem1  10555  axacndlem3  10569  axacndlem5  10571  axacnd  10572  bj-nfs1t  36785  bj-hbs1  36807  bj-hbsb2av  36809  bj-hbaeb2  36813  wl-hbae1  37514  frege93  43952  spALT  44197  pm11.57  44385  pm11.59  44387  axc5c4c711toc7  44400  axc11next  44402  hbalg  44552  ax6e2eq  44554  ax6e2eqVD  44903  ichnfimlem  47468
  Copyright terms: Public domain W3C validator