MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc4i Structured version   Visualization version   GIF version

Theorem axc4i 2325
Description: Inference version of axc4 2324. (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
axc4i.1 (∀𝑥𝜑𝜓)
Assertion
Ref Expression
axc4i (∀𝑥𝜑 → ∀𝑥𝜓)

Proof of Theorem axc4i
StepHypRef Expression
1 nfa1 2156 . 2 𝑥𝑥𝜑
2 axc4i.1 . 2 (∀𝑥𝜑𝜓)
31, 2alrimi 2218 1 (∀𝑥𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2146  ax-12 2182
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  hbae  2433  hbsb2  2484  hbsb2a  2486  hbsb2e  2488  reu6  3681  ralidm  4461  axunndlem1  10493  axacndlem3  10507  axacndlem5  10509  axacnd  10510  bj-nfs1t  36855  bj-hbs1  36877  bj-hbsb2av  36879  bj-hbaeb2  36883  wl-hbae1  37584  frege93  44074  spALT  44319  pm11.57  44507  pm11.59  44509  axc5c4c711toc7  44522  axc11next  44524  hbalg  44673  ax6e2eq  44675  ax6e2eqVD  45024  ichnfimlem  47588
  Copyright terms: Public domain W3C validator