MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc4i Structured version   Visualization version   GIF version

Theorem axc4i 2314
Description: Inference version of axc4 2313. (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
axc4i.1 (∀𝑥𝜑𝜓)
Assertion
Ref Expression
axc4i (∀𝑥𝜑 → ∀𝑥𝜓)

Proof of Theorem axc4i
StepHypRef Expression
1 nfa1 2146 . 2 𝑥𝑥𝜑
2 axc4i.1 . 2 (∀𝑥𝜑𝜓)
31, 2alrimi 2204 1 (∀𝑥𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-10 2135  ax-12 2169
This theorem depends on definitions:  df-bi 206  df-or 846  df-ex 1780  df-nf 1784
This theorem is referenced by:  hbae  2429  hbsb2  2484  hbsb2a  2486  hbsb2e  2488  nfabdwOLD  2929  reu6  3666  ralidm  4448  axunndlem1  10397  axacndlem3  10411  axacndlem5  10413  axacnd  10414  bj-nfs1t  35017  bj-hbs1  35039  bj-hbsb2av  35041  bj-hbaeb2  35045  wl-hbae1  35722  frege93  41602  spALT  41850  pm11.57  42045  pm11.59  42047  axc5c4c711toc7  42060  axc11next  42062  hbalg  42213  ax6e2eq  42215  ax6e2eqVD  42565  ichnfimlem  44973
  Copyright terms: Public domain W3C validator