MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc4i Structured version   Visualization version   GIF version

Theorem axc4i 2322
Description: Inference version of axc4 2321. (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
axc4i.1 (∀𝑥𝜑𝜓)
Assertion
Ref Expression
axc4i (∀𝑥𝜑 → ∀𝑥𝜓)

Proof of Theorem axc4i
StepHypRef Expression
1 nfa1 2151 . 2 𝑥𝑥𝜑
2 axc4i.1 . 2 (∀𝑥𝜑𝜓)
31, 2alrimi 2213 1 (∀𝑥𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  hbae  2435  hbsb2  2486  hbsb2a  2488  hbsb2e  2490  reu6  3709  ralidm  4487  axunndlem1  10609  axacndlem3  10623  axacndlem5  10625  axacnd  10626  bj-nfs1t  36808  bj-hbs1  36830  bj-hbsb2av  36832  bj-hbaeb2  36836  wl-hbae1  37537  frege93  43980  spALT  44225  pm11.57  44413  pm11.59  44415  axc5c4c711toc7  44428  axc11next  44430  hbalg  44580  ax6e2eq  44582  ax6e2eqVD  44931  ichnfimlem  47477
  Copyright terms: Public domain W3C validator