Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axc4i | Structured version Visualization version GIF version |
Description: Inference version of axc4 2320. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
axc4i.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
Ref | Expression |
---|---|
axc4i | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2152 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | axc4i.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
3 | 1, 2 | alrimi 2211 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-10 2141 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-or 848 df-ex 1788 df-nf 1792 |
This theorem is referenced by: hbae 2430 hbsb2 2485 hbsb2a 2487 hbsb2e 2489 nfabdwOLD 2928 reu6 3639 ralidm 4423 axunndlem1 10209 axacndlem3 10223 axacndlem5 10225 axacnd 10226 bj-nfs1t 34709 bj-hbs1 34731 bj-hbsb2av 34733 bj-hbaeb2 34738 wl-hbae1 35415 frege93 41241 spALT 41490 pm11.57 41680 pm11.59 41682 axc5c4c711toc7 41695 axc11next 41697 hbalg 41848 ax6e2eq 41850 ax6e2eqVD 42200 ichnfimlem 44588 |
Copyright terms: Public domain | W3C validator |