![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc4i | Structured version Visualization version GIF version |
Description: Inference version of axc4 2319. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
axc4i.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
Ref | Expression |
---|---|
axc4i | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2148 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | axc4i.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
3 | 1, 2 | alrimi 2210 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-10 2138 ax-12 2174 |
This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1776 df-nf 1780 |
This theorem is referenced by: hbae 2433 hbsb2 2484 hbsb2a 2486 hbsb2e 2488 reu6 3734 ralidm 4517 axunndlem1 10632 axacndlem3 10646 axacndlem5 10648 axacnd 10649 bj-nfs1t 36772 bj-hbs1 36794 bj-hbsb2av 36796 bj-hbaeb2 36800 wl-hbae1 37499 frege93 43945 spALT 44190 pm11.57 44384 pm11.59 44386 axc5c4c711toc7 44399 axc11next 44401 hbalg 44552 ax6e2eq 44554 ax6e2eqVD 44904 ichnfimlem 47387 |
Copyright terms: Public domain | W3C validator |