Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axc4i | Structured version Visualization version GIF version |
Description: Inference version of axc4 2313. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
axc4i.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
Ref | Expression |
---|---|
axc4i | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2146 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | axc4i.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
3 | 1, 2 | alrimi 2204 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-or 846 df-ex 1780 df-nf 1784 |
This theorem is referenced by: hbae 2429 hbsb2 2484 hbsb2a 2486 hbsb2e 2488 nfabdwOLD 2929 reu6 3666 ralidm 4448 axunndlem1 10397 axacndlem3 10411 axacndlem5 10413 axacnd 10414 bj-nfs1t 35017 bj-hbs1 35039 bj-hbsb2av 35041 bj-hbaeb2 35045 wl-hbae1 35722 frege93 41602 spALT 41850 pm11.57 42045 pm11.59 42047 axc5c4c711toc7 42060 axc11next 42062 hbalg 42213 ax6e2eq 42215 ax6e2eqVD 42565 ichnfimlem 44973 |
Copyright terms: Public domain | W3C validator |