MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc4i Structured version   Visualization version   GIF version

Theorem axc4i 2326
Description: Inference version of axc4 2325. (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
axc4i.1 (∀𝑥𝜑𝜓)
Assertion
Ref Expression
axc4i (∀𝑥𝜑 → ∀𝑥𝜓)

Proof of Theorem axc4i
StepHypRef Expression
1 nfa1 2152 . 2 𝑥𝑥𝜑
2 axc4i.1 . 2 (∀𝑥𝜑𝜓)
31, 2alrimi 2214 1 (∀𝑥𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  hbae  2439  hbsb2  2490  hbsb2a  2492  hbsb2e  2494  nfabdwOLD  2933  reu6  3748  ralidm  4535  axunndlem1  10664  axacndlem3  10678  axacndlem5  10680  axacnd  10681  bj-nfs1t  36756  bj-hbs1  36778  bj-hbsb2av  36780  bj-hbaeb2  36784  wl-hbae1  37473  frege93  43918  spALT  44163  pm11.57  44358  pm11.59  44360  axc5c4c711toc7  44373  axc11next  44375  hbalg  44526  ax6e2eq  44528  ax6e2eqVD  44878  ichnfimlem  47337
  Copyright terms: Public domain W3C validator