| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc4i | Structured version Visualization version GIF version | ||
| Description: Inference version of axc4 2321. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| axc4i.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| axc4i | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2151 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | axc4i.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 3 | 1, 2 | alrimi 2213 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: hbae 2435 hbsb2 2486 hbsb2a 2488 hbsb2e 2490 reu6 3709 ralidm 4487 axunndlem1 10609 axacndlem3 10623 axacndlem5 10625 axacnd 10626 bj-nfs1t 36808 bj-hbs1 36830 bj-hbsb2av 36832 bj-hbaeb2 36836 wl-hbae1 37537 frege93 43980 spALT 44225 pm11.57 44413 pm11.59 44415 axc5c4c711toc7 44428 axc11next 44430 hbalg 44580 ax6e2eq 44582 ax6e2eqVD 44931 ichnfimlem 47477 |
| Copyright terms: Public domain | W3C validator |