|   | Mathbox for Wolf Lammen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-ifp4impr | Structured version Visualization version GIF version | ||
| Description: If one case of an if- condition is a consequence of the other, the expression in dfifp4 1067 can be shortened. (Contributed by Wolf Lammen, 18-Jun-2024.) | 
| Ref | Expression | 
|---|---|
| wl-ifp4impr | ⊢ ((𝜒 → 𝜓) → (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜒) ∧ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wl-ifpimpr 37467 | . 2 ⊢ ((𝜒 → 𝜓) → (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ 𝜒))) | |
| 2 | pm4.71 557 | . . . . 5 ⊢ ((𝜒 → 𝜓) ↔ (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ ((𝜒 → 𝜓) → (𝜒 ↔ (𝜒 ∧ 𝜓))) | 
| 4 | 3 | orbi2d 916 | . . 3 ⊢ ((𝜒 → 𝜓) → (((𝜑 ∧ 𝜓) ∨ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜓)))) | 
| 5 | andir 1011 | . . 3 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜓))) | |
| 6 | 4, 5 | bitr4di 289 | . 2 ⊢ ((𝜒 → 𝜓) → (((𝜑 ∧ 𝜓) ∨ 𝜒) ↔ ((𝜑 ∨ 𝜒) ∧ 𝜓))) | 
| 7 | 1, 6 | bitrd 279 | 1 ⊢ ((𝜒 → 𝜓) → (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜒) ∧ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 | 
| This theorem is referenced by: wl-df3-3mintru2 37487 | 
| Copyright terms: Public domain | W3C validator |