Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 340 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
3 | df-or 844 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
4 | df-or 844 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: orbi1d 913 orbi12d 915 eueq2 3648 sbc2or 3728 r19.44zv 4439 rexprgf 4634 rextpg 4640 swopolem 5512 poleloe 6033 elsucg 6330 elsuc2g 6331 brdifun 8501 brwdom 9287 isfin1a 10032 elgch 10362 suplem2pr 10793 axlttri 11030 mulcan1g 11611 elznn0 12317 elznn 12318 zindd 12404 rpneg 12744 dfle2 12863 fzm1 13318 fzosplitsni 13479 hashv01gt1 14040 zeo5 16046 bitsf1 16134 lcmval 16278 lcmneg 16289 lcmass 16300 isprm6 16400 infpn2 16595 irredmul 19932 domneq0 20549 znfld 20749 quotval 25433 plydivlem4 25437 plydivex 25438 aalioulem2 25474 aalioulem5 25477 aalioulem6 25478 aaliou 25479 aaliou2 25481 aaliou2b 25482 isinag 27180 axcontlem7 27319 hashecclwwlkn1 28420 elunsn 30837 eliccioo 31184 tlt2 31226 prmidl 31594 mxidlval 31612 sibfof 32286 ballotlemfc0 32438 ballotlemfcc 32439 satfvsucsuc 33306 satf0op 33318 fmlafvel 33326 isfmlasuc 33329 satfv1fvfmla1 33364 xpord2ind 33773 seglelin 34397 lineunray 34428 topdifinfeq 35500 wl-ifp4impr 35617 mblfinlem2 35794 pridl 36174 maxidlval 36176 ispridlc 36207 pridlc 36208 dmnnzd 36212 lcfl7N 39494 aomclem8 40866 orbi1r 42083 iccpartgtl 44830 iccpartleu 44832 lindslinindsimp2lem5 45755 lindslinindsimp2 45756 rrx2pnedifcoorneorr 46015 |
Copyright terms: Public domain | W3C validator |