| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | imbi2d 340 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
| 3 | df-or 848 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
| 4 | df-or 848 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1d 916 orbi12d 918 eueq2 3665 sbc2or 3746 r19.44zv 4459 elunsn 4637 rexprgf 4649 rextpg 4653 swopolem 5539 poleloe 6085 elsucg 6384 elsuc2g 6385 xpord2indlem 8086 brdifun 8661 brwdom 9464 isfin1a 10194 elgch 10524 suplem2pr 10955 axlttri 11195 mulcan1g 11781 elznn0 12494 elznn 12495 zindd 12584 rpneg 12930 dfle2 13052 fzm1 13514 fzosplitsni 13686 hashv01gt1 14259 zeo5 16274 bitsf1 16364 lcmval 16510 lcmneg 16521 lcmass 16532 isprm6 16632 infpn2 16832 irredmul 20356 lringuplu 20468 domneq0 20632 znfld 21506 quotval 26247 plydivlem4 26251 plydivex 26252 aalioulem2 26288 aalioulem5 26291 aalioulem6 26292 aaliou 26293 aaliou2 26295 aaliou2b 26296 elzs2 28343 elznns 28346 isinag 28836 axcontlem7 28969 hashecclwwlkn1 30078 eliccioo 32940 tlt2 32979 prmidl 33449 mxidlval 33470 rprmdvds 33528 sibfof 34425 ballotlemfc0 34578 ballotlemfcc 34579 satfvsucsuc 35481 satf0op 35493 fmlafvel 35501 isfmlasuc 35504 satfv1fvfmla1 35539 seglelin 36232 lineunray 36263 topdifinfeq 37467 wl-ifp4impr 37584 mblfinlem2 37771 pridl 38150 maxidlval 38152 ispridlc 38183 pridlc 38184 dmnnzd 38188 lcfl7N 41673 aomclem8 43218 fzuntgd 43615 orbi1r 44667 iccpartgtl 47588 iccpartleu 47590 clnbupgrel 47996 dfsclnbgr6 48020 lindslinindsimp2lem5 48624 lindslinindsimp2 48625 rrx2pnedifcoorneorr 48879 |
| Copyright terms: Public domain | W3C validator |