| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | imbi2d 340 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
| 3 | df-or 848 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
| 4 | df-or 848 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1d 916 orbi12d 918 eueq2 3684 sbc2or 3765 r19.44zv 4470 elunsn 4650 rexprgf 4662 rextpg 4666 swopolem 5559 poleloe 6107 elsucg 6405 elsuc2g 6406 xpord2indlem 8129 brdifun 8704 brwdom 9527 isfin1a 10252 elgch 10582 suplem2pr 11013 axlttri 11252 mulcan1g 11838 elznn0 12551 elznn 12552 zindd 12642 rpneg 12992 dfle2 13114 fzm1 13575 fzosplitsni 13746 hashv01gt1 14317 zeo5 16333 bitsf1 16423 lcmval 16569 lcmneg 16580 lcmass 16591 isprm6 16691 infpn2 16891 irredmul 20345 lringuplu 20460 domneq0 20624 znfld 21477 quotval 26207 plydivlem4 26211 plydivex 26212 aalioulem2 26248 aalioulem5 26251 aalioulem6 26252 aaliou 26253 aaliou2 26255 aaliou2b 26256 elzs2 28294 elznns 28297 isinag 28772 axcontlem7 28904 hashecclwwlkn1 30013 eliccioo 32858 tlt2 32902 prmidl 33418 mxidlval 33439 rprmdvds 33497 sibfof 34338 ballotlemfc0 34491 ballotlemfcc 34492 satfvsucsuc 35359 satf0op 35371 fmlafvel 35379 isfmlasuc 35382 satfv1fvfmla1 35417 seglelin 36111 lineunray 36142 topdifinfeq 37345 wl-ifp4impr 37462 mblfinlem2 37659 pridl 38038 maxidlval 38040 ispridlc 38071 pridlc 38072 dmnnzd 38076 lcfl7N 41502 aomclem8 43057 fzuntgd 43454 orbi1r 44507 iccpartgtl 47431 iccpartleu 47433 clnbupgrel 47839 dfsclnbgr6 47862 lindslinindsimp2lem5 48455 lindslinindsimp2 48456 rrx2pnedifcoorneorr 48710 |
| Copyright terms: Public domain | W3C validator |