![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 332 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
3 | df-or 875 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
4 | df-or 875 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 306 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∨ wo 874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-or 875 |
This theorem is referenced by: orbi1d 941 orbi12d 943 eueq2 3576 sbc2or 3642 r19.44zv 4262 rexprg 4425 rextpg 4427 swopolem 5242 poleloe 5745 elsucg 6008 elsuc2g 6009 brdifun 8011 brwdom 8714 isfin1a 9402 elgch 9732 suplem2pr 10163 axlttri 10399 mulcan1g 10972 elznn0 11681 elznn 11682 zindd 11768 rpneg 12108 dfle2 12227 fzm1 12674 fzosplitsni 12834 hashv01gt1 13385 zeo5 15416 bitsf1 15503 lcmval 15640 lcmneg 15651 lcmass 15662 isprm6 15759 infpn2 15950 irredmul 19025 domneq0 19620 znfld 20230 quotval 24388 plydivlem4 24392 plydivex 24393 aalioulem2 24429 aalioulem5 24432 aalioulem6 24433 aaliou 24434 aaliou2 24436 aaliou2b 24437 isinag 26085 axcontlem7 26207 hashecclwwlkn1 27395 eliccioo 30155 tlt2 30180 sibfof 30918 ballotlemfc0 31071 ballotlemfcc 31072 seglelin 32736 lineunray 32767 topdifinfeq 33696 mblfinlem2 33936 pridl 34323 maxidlval 34325 ispridlc 34356 pridlc 34357 dmnnzd 34361 lcfl7N 37522 aomclem8 38416 orbi1r 39496 iccpartgtl 42202 iccpartleu 42204 lindslinindsimp2lem5 43050 lindslinindsimp2 43051 |
Copyright terms: Public domain | W3C validator |