![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 340 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
3 | df-or 847 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
4 | df-or 847 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: orbi1d 915 orbi12d 917 eueq2 3705 sbc2or 3785 r19.44zv 4504 rexprgf 4698 rextpg 4704 swopolem 5600 poleloe 6137 elsucg 6437 elsuc2g 6438 xpord2indlem 8152 brdifun 8753 brwdom 9590 isfin1a 10315 elgch 10645 suplem2pr 11076 axlttri 11315 mulcan1g 11897 elznn0 12603 elznn 12604 zindd 12693 rpneg 13038 dfle2 13158 fzm1 13613 fzosplitsni 13775 hashv01gt1 14336 zeo5 16332 bitsf1 16420 lcmval 16562 lcmneg 16573 lcmass 16584 isprm6 16684 infpn2 16881 irredmul 20367 lringuplu 20480 domneq0 21243 znfld 21493 quotval 26226 plydivlem4 26230 plydivex 26231 aalioulem2 26267 aalioulem5 26270 aalioulem6 26271 aaliou 26272 aaliou2 26274 aaliou2b 26275 isinag 28641 axcontlem7 28780 hashecclwwlkn1 29886 elunsn 32307 eliccioo 32654 tlt2 32696 prmidl 33156 mxidlval 33174 sibfof 33960 ballotlemfc0 34112 ballotlemfcc 34113 satfvsucsuc 34975 satf0op 34987 fmlafvel 34995 isfmlasuc 34998 satfv1fvfmla1 35033 seglelin 35712 lineunray 35743 topdifinfeq 36829 wl-ifp4impr 36946 mblfinlem2 37131 pridl 37510 maxidlval 37512 ispridlc 37543 pridlc 37544 dmnnzd 37548 lcfl7N 40974 aomclem8 42485 fzuntgd 42888 orbi1r 43949 iccpartgtl 46766 iccpartleu 46768 lindslinindsimp2lem5 47530 lindslinindsimp2 47531 rrx2pnedifcoorneorr 47790 |
Copyright terms: Public domain | W3C validator |