Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 341 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
3 | df-or 846 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
4 | df-or 846 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 |
This theorem is referenced by: orbi1d 915 orbi12d 917 eueq2 3650 sbc2or 3730 r19.44zv 4440 rexprgf 4633 rextpg 4639 swopolem 5524 poleloe 6051 elsucg 6348 elsuc2g 6349 brdifun 8558 brwdom 9370 isfin1a 10094 elgch 10424 suplem2pr 10855 axlttri 11092 mulcan1g 11674 elznn0 12380 elznn 12381 zindd 12467 rpneg 12808 dfle2 12927 fzm1 13382 fzosplitsni 13544 hashv01gt1 14105 zeo5 16110 bitsf1 16198 lcmval 16342 lcmneg 16353 lcmass 16364 isprm6 16464 infpn2 16659 irredmul 19996 domneq0 20613 znfld 20813 quotval 25497 plydivlem4 25501 plydivex 25502 aalioulem2 25538 aalioulem5 25541 aalioulem6 25542 aaliou 25543 aaliou2 25545 aaliou2b 25546 isinag 27244 axcontlem7 27383 hashecclwwlkn1 28486 elunsn 30903 eliccioo 31250 tlt2 31292 prmidl 31660 mxidlval 31678 sibfof 32352 ballotlemfc0 32504 ballotlemfcc 32505 satfvsucsuc 33372 satf0op 33384 fmlafvel 33392 isfmlasuc 33395 satfv1fvfmla1 33430 xpord2ind 33839 seglelin 34463 lineunray 34494 topdifinfeq 35565 wl-ifp4impr 35682 mblfinlem2 35859 pridl 36239 maxidlval 36241 ispridlc 36272 pridlc 36273 dmnnzd 36277 lcfl7N 39557 aomclem8 40924 fzuntgd 41103 orbi1r 42168 iccpartgtl 44936 iccpartleu 44938 lindslinindsimp2lem5 45861 lindslinindsimp2 45862 rrx2pnedifcoorneorr 46121 |
Copyright terms: Public domain | W3C validator |