| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | imbi2d 340 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
| 3 | df-or 848 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
| 4 | df-or 848 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1d 916 orbi12d 918 eueq2 3672 sbc2or 3753 r19.44zv 4457 elunsn 4637 rexprgf 4649 rextpg 4653 swopolem 5541 poleloe 6084 elsucg 6381 elsuc2g 6382 xpord2indlem 8087 brdifun 8662 brwdom 9478 isfin1a 10205 elgch 10535 suplem2pr 10966 axlttri 11206 mulcan1g 11792 elznn0 12505 elznn 12506 zindd 12596 rpneg 12946 dfle2 13068 fzm1 13529 fzosplitsni 13700 hashv01gt1 14271 zeo5 16286 bitsf1 16376 lcmval 16522 lcmneg 16533 lcmass 16544 isprm6 16644 infpn2 16844 irredmul 20333 lringuplu 20448 domneq0 20612 znfld 21486 quotval 26217 plydivlem4 26221 plydivex 26222 aalioulem2 26258 aalioulem5 26261 aalioulem6 26262 aaliou 26263 aaliou2 26265 aaliou2b 26266 elzs2 28311 elznns 28314 isinag 28802 axcontlem7 28934 hashecclwwlkn1 30040 eliccioo 32890 tlt2 32930 prmidl 33396 mxidlval 33417 rprmdvds 33475 sibfof 34327 ballotlemfc0 34480 ballotlemfcc 34481 satfvsucsuc 35357 satf0op 35369 fmlafvel 35377 isfmlasuc 35380 satfv1fvfmla1 35415 seglelin 36109 lineunray 36140 topdifinfeq 37343 wl-ifp4impr 37460 mblfinlem2 37657 pridl 38036 maxidlval 38038 ispridlc 38069 pridlc 38070 dmnnzd 38074 lcfl7N 41500 aomclem8 43054 fzuntgd 43451 orbi1r 44504 iccpartgtl 47430 iccpartleu 47432 clnbupgrel 47838 dfsclnbgr6 47862 lindslinindsimp2lem5 48467 lindslinindsimp2 48468 rrx2pnedifcoorneorr 48722 |
| Copyright terms: Public domain | W3C validator |