![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 340 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
3 | df-or 847 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
4 | df-or 847 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: orbi1d 915 orbi12d 917 eueq2 3732 sbc2or 3813 r19.44zv 4527 rexprgf 4718 rextpg 4724 swopolem 5618 poleloe 6163 elsucg 6463 elsuc2g 6464 xpord2indlem 8188 brdifun 8793 brwdom 9636 isfin1a 10361 elgch 10691 suplem2pr 11122 axlttri 11361 mulcan1g 11943 elznn0 12654 elznn 12655 zindd 12744 rpneg 13089 dfle2 13209 fzm1 13664 fzosplitsni 13828 hashv01gt1 14394 zeo5 16404 bitsf1 16492 lcmval 16639 lcmneg 16650 lcmass 16661 isprm6 16761 infpn2 16960 irredmul 20455 lringuplu 20570 domneq0 20730 znfld 21602 quotval 26352 plydivlem4 26356 plydivex 26357 aalioulem2 26393 aalioulem5 26396 aalioulem6 26397 aaliou 26398 aaliou2 26400 aaliou2b 26401 elzs2 28403 elznns 28406 isinag 28864 axcontlem7 29003 hashecclwwlkn1 30109 elunsn 32541 eliccioo 32895 tlt2 32942 prmidl 33433 mxidlval 33454 rprmdvds 33512 sibfof 34305 ballotlemfc0 34457 ballotlemfcc 34458 satfvsucsuc 35333 satf0op 35345 fmlafvel 35353 isfmlasuc 35356 satfv1fvfmla1 35391 seglelin 36080 lineunray 36111 topdifinfeq 37316 wl-ifp4impr 37433 mblfinlem2 37618 pridl 37997 maxidlval 37999 ispridlc 38030 pridlc 38031 dmnnzd 38035 lcfl7N 41458 aomclem8 43018 fzuntgd 43420 orbi1r 44481 iccpartgtl 47300 iccpartleu 47302 clnbupgrel 47707 dfsclnbgr6 47730 lindslinindsimp2lem5 48191 lindslinindsimp2 48192 rrx2pnedifcoorneorr 48451 |
Copyright terms: Public domain | W3C validator |