| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | imbi2d 340 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
| 3 | df-or 848 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
| 4 | df-or 848 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1d 916 orbi12d 918 eueq2 3664 sbc2or 3745 r19.44zv 4449 elunsn 4631 rexprgf 4643 rextpg 4647 swopolem 5529 poleloe 6073 elsucg 6371 elsuc2g 6372 xpord2indlem 8072 brdifun 8647 brwdom 9448 isfin1a 10178 elgch 10508 suplem2pr 10939 axlttri 11179 mulcan1g 11765 elznn0 12478 elznn 12479 zindd 12569 rpneg 12919 dfle2 13041 fzm1 13502 fzosplitsni 13674 hashv01gt1 14247 zeo5 16262 bitsf1 16352 lcmval 16498 lcmneg 16509 lcmass 16520 isprm6 16620 infpn2 16820 irredmul 20342 lringuplu 20454 domneq0 20618 znfld 21492 quotval 26222 plydivlem4 26226 plydivex 26227 aalioulem2 26263 aalioulem5 26266 aalioulem6 26267 aaliou 26268 aaliou2 26270 aaliou2b 26271 elzs2 28318 elznns 28321 isinag 28811 axcontlem7 28943 hashecclwwlkn1 30049 eliccioo 32903 tlt2 32942 prmidl 33397 mxidlval 33418 rprmdvds 33476 sibfof 34345 ballotlemfc0 34498 ballotlemfcc 34499 satfvsucsuc 35401 satf0op 35413 fmlafvel 35421 isfmlasuc 35424 satfv1fvfmla1 35459 seglelin 36150 lineunray 36181 topdifinfeq 37384 wl-ifp4impr 37501 mblfinlem2 37698 pridl 38077 maxidlval 38079 ispridlc 38110 pridlc 38111 dmnnzd 38115 lcfl7N 41540 aomclem8 43094 fzuntgd 43491 orbi1r 44543 iccpartgtl 47457 iccpartleu 47459 clnbupgrel 47865 dfsclnbgr6 47889 lindslinindsimp2lem5 48494 lindslinindsimp2 48495 rrx2pnedifcoorneorr 48749 |
| Copyright terms: Public domain | W3C validator |