| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | imbi2d 340 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
| 3 | df-or 848 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
| 4 | df-or 848 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1d 916 orbi12d 918 eueq2 3678 sbc2or 3759 r19.44zv 4463 elunsn 4643 rexprgf 4655 rextpg 4659 swopolem 5549 poleloe 6092 elsucg 6390 elsuc2g 6391 xpord2indlem 8103 brdifun 8678 brwdom 9496 isfin1a 10221 elgch 10551 suplem2pr 10982 axlttri 11221 mulcan1g 11807 elznn0 12520 elznn 12521 zindd 12611 rpneg 12961 dfle2 13083 fzm1 13544 fzosplitsni 13715 hashv01gt1 14286 zeo5 16302 bitsf1 16392 lcmval 16538 lcmneg 16549 lcmass 16560 isprm6 16660 infpn2 16860 irredmul 20314 lringuplu 20429 domneq0 20593 znfld 21446 quotval 26176 plydivlem4 26180 plydivex 26181 aalioulem2 26217 aalioulem5 26220 aalioulem6 26221 aaliou 26222 aaliou2 26224 aaliou2b 26225 elzs2 28263 elznns 28266 isinag 28741 axcontlem7 28873 hashecclwwlkn1 29979 eliccioo 32824 tlt2 32868 prmidl 33384 mxidlval 33405 rprmdvds 33463 sibfof 34304 ballotlemfc0 34457 ballotlemfcc 34458 satfvsucsuc 35325 satf0op 35337 fmlafvel 35345 isfmlasuc 35348 satfv1fvfmla1 35383 seglelin 36077 lineunray 36108 topdifinfeq 37311 wl-ifp4impr 37428 mblfinlem2 37625 pridl 38004 maxidlval 38006 ispridlc 38037 pridlc 38038 dmnnzd 38042 lcfl7N 41468 aomclem8 43023 fzuntgd 43420 orbi1r 44473 iccpartgtl 47400 iccpartleu 47402 clnbupgrel 47808 dfsclnbgr6 47831 lindslinindsimp2lem5 48424 lindslinindsimp2 48425 rrx2pnedifcoorneorr 48679 |
| Copyright terms: Public domain | W3C validator |