| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | imbi2d 340 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
| 3 | df-or 848 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
| 4 | df-or 848 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1d 916 orbi12d 918 eueq2 3681 sbc2or 3762 r19.44zv 4467 elunsn 4647 rexprgf 4659 rextpg 4663 swopolem 5556 poleloe 6104 elsucg 6402 elsuc2g 6403 xpord2indlem 8126 brdifun 8701 brwdom 9520 isfin1a 10245 elgch 10575 suplem2pr 11006 axlttri 11245 mulcan1g 11831 elznn0 12544 elznn 12545 zindd 12635 rpneg 12985 dfle2 13107 fzm1 13568 fzosplitsni 13739 hashv01gt1 14310 zeo5 16326 bitsf1 16416 lcmval 16562 lcmneg 16573 lcmass 16584 isprm6 16684 infpn2 16884 irredmul 20338 lringuplu 20453 domneq0 20617 znfld 21470 quotval 26200 plydivlem4 26204 plydivex 26205 aalioulem2 26241 aalioulem5 26244 aalioulem6 26245 aaliou 26246 aaliou2 26248 aaliou2b 26249 elzs2 28287 elznns 28290 isinag 28765 axcontlem7 28897 hashecclwwlkn1 30006 eliccioo 32851 tlt2 32895 prmidl 33411 mxidlval 33432 rprmdvds 33490 sibfof 34331 ballotlemfc0 34484 ballotlemfcc 34485 satfvsucsuc 35352 satf0op 35364 fmlafvel 35372 isfmlasuc 35375 satfv1fvfmla1 35410 seglelin 36104 lineunray 36135 topdifinfeq 37338 wl-ifp4impr 37455 mblfinlem2 37652 pridl 38031 maxidlval 38033 ispridlc 38064 pridlc 38065 dmnnzd 38069 lcfl7N 41495 aomclem8 43050 fzuntgd 43447 orbi1r 44500 iccpartgtl 47427 iccpartleu 47429 clnbupgrel 47835 dfsclnbgr6 47858 lindslinindsimp2lem5 48451 lindslinindsimp2 48452 rrx2pnedifcoorneorr 48706 |
| Copyright terms: Public domain | W3C validator |