Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 344 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
3 | df-or 847 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
4 | df-or 847 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 317 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 847 |
This theorem is referenced by: orbi1d 916 orbi12d 918 eueq2 3609 sbc2or 3689 r19.44zv 4390 rexprgf 4584 rextpg 4590 swopolem 5452 poleloe 5965 elsucg 6239 elsuc2g 6240 brdifun 8349 brwdom 9104 isfin1a 9792 elgch 10122 suplem2pr 10553 axlttri 10790 mulcan1g 11371 elznn0 12077 elznn 12078 zindd 12164 rpneg 12504 dfle2 12623 fzm1 13078 fzosplitsni 13239 hashv01gt1 13797 zeo5 15801 bitsf1 15889 lcmval 16033 lcmneg 16044 lcmass 16055 isprm6 16155 infpn2 16349 irredmul 19581 domneq0 20189 znfld 20379 quotval 25040 plydivlem4 25044 plydivex 25045 aalioulem2 25081 aalioulem5 25084 aalioulem6 25085 aaliou 25086 aaliou2 25088 aaliou2b 25089 isinag 26784 axcontlem7 26916 hashecclwwlkn1 28014 elunsn 30432 eliccioo 30780 tlt2 30824 prmidl 31187 mxidlval 31205 sibfof 31877 ballotlemfc0 32029 ballotlemfcc 32030 satfvsucsuc 32898 satf0op 32910 fmlafvel 32918 isfmlasuc 32921 satfv1fvfmla1 32956 xpord2ind 33405 seglelin 34056 lineunray 34087 topdifinfeq 35144 wl-ifp4impr 35261 mblfinlem2 35438 pridl 35818 maxidlval 35820 ispridlc 35851 pridlc 35852 dmnnzd 35856 lcfl7N 39138 aomclem8 40458 orbi1r 41668 iccpartgtl 44412 iccpartleu 44414 lindslinindsimp2lem5 45337 lindslinindsimp2 45338 rrx2pnedifcoorneorr 45597 |
Copyright terms: Public domain | W3C validator |