| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > andir | Structured version Visualization version GIF version | ||
| Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| andir | ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | andi 1009 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) | |
| 2 | ancom 460 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑 ∨ 𝜓))) | |
| 3 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜑)) | |
| 4 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 5 | 3, 4 | orbi12i 914 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: anddi 1012 cases 1042 cador 1608 rexun 4159 rabun2 4287 reuun2 4288 uniprg 4887 xpundir 5708 coundi 6220 mptun 6664 frxp2 8123 tpostpos 8225 ssfi 9137 wemapsolem 9503 ltxr 13075 hashbclem 14417 hashf1lem2 14421 pythagtriplem2 16788 pythagtrip 16805 vdwapun 16945 nosep2o 27594 legtrid 28518 colinearalg 28837 vtxdun 29409 rmoun 32423 elimifd 32472 satfvsuclem2 35347 satf0 35359 dfon2lem5 35775 seglelin 36104 bj-prmoore 37103 wl-ifp4impr 37455 wl-df4-3mintru2 37475 poimirlem30 37644 poimirlem31 37645 cnambfre 37662 fimgmcyclem 42521 expdioph 43012 dflim5 43318 rp-isfinite6 43507 uneqsn 44014 |
| Copyright terms: Public domain | W3C validator |