MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  andir Structured version   Visualization version   GIF version

Theorem andir 1010
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
andir (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))

Proof of Theorem andir
StepHypRef Expression
1 andi 1009 . 2 ((𝜒 ∧ (𝜑𝜓)) ↔ ((𝜒𝜑) ∨ (𝜒𝜓)))
2 ancom 460 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑𝜓)))
3 ancom 460 . . 3 ((𝜑𝜒) ↔ (𝜒𝜑))
4 ancom 460 . . 3 ((𝜓𝜒) ↔ (𝜒𝜓))
53, 4orbi12i 914 . 2 (((𝜑𝜒) ∨ (𝜓𝜒)) ↔ ((𝜒𝜑) ∨ (𝜒𝜓)))
61, 2, 53bitr4i 303 1 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  anddi  1012  cases  1042  cador  1608  rexun  4159  rabun2  4287  reuun2  4288  uniprg  4887  xpundir  5708  coundi  6220  mptun  6664  frxp2  8123  tpostpos  8225  ssfi  9137  wemapsolem  9503  ltxr  13075  hashbclem  14417  hashf1lem2  14421  pythagtriplem2  16788  pythagtrip  16805  vdwapun  16945  nosep2o  27594  legtrid  28518  colinearalg  28837  vtxdun  29409  rmoun  32423  elimifd  32472  satfvsuclem2  35347  satf0  35359  dfon2lem5  35775  seglelin  36104  bj-prmoore  37103  wl-ifp4impr  37455  wl-df4-3mintru2  37475  poimirlem30  37644  poimirlem31  37645  cnambfre  37662  fimgmcyclem  42521  expdioph  43012  dflim5  43318  rp-isfinite6  43507  uneqsn  44014
  Copyright terms: Public domain W3C validator