![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > andir | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
andir | ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 1008 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) | |
2 | ancom 460 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑 ∨ 𝜓))) | |
3 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜑)) | |
4 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
5 | 3, 4 | orbi12i 913 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 |
This theorem is referenced by: anddi 1011 cases 1043 cador 1605 rexun 4219 rabun2 4343 reuun2 4344 uniprg 4947 xpundir 5769 coundi 6278 mptun 6726 frxp2 8185 tpostpos 8287 ssfi 9240 wemapsolem 9619 ltxr 13178 hashbclem 14501 hashf1lem2 14505 pythagtriplem2 16864 pythagtrip 16881 vdwapun 17021 nosep2o 27745 legtrid 28617 colinearalg 28943 vtxdun 29517 rmoun 32522 elimifd 32566 satfvsuclem2 35328 satf0 35340 dfon2lem5 35751 seglelin 36080 bj-prmoore 37081 wl-ifp4impr 37433 wl-df4-3mintru2 37453 poimirlem30 37610 poimirlem31 37611 cnambfre 37628 fimgmcyclem 42488 expdioph 42980 dflim5 43291 rp-isfinite6 43480 uneqsn 43987 |
Copyright terms: Public domain | W3C validator |