![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > andir | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
andir | ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 1009 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) | |
2 | ancom 460 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑 ∨ 𝜓))) | |
3 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜑)) | |
4 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
5 | 3, 4 | orbi12i 914 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
This theorem is referenced by: anddi 1012 cases 1042 cador 1605 rexun 4206 rabun2 4330 reuun2 4331 uniprg 4928 xpundir 5758 coundi 6269 mptun 6715 frxp2 8168 tpostpos 8270 ssfi 9212 wemapsolem 9588 ltxr 13155 hashbclem 14488 hashf1lem2 14492 pythagtriplem2 16851 pythagtrip 16868 vdwapun 17008 nosep2o 27742 legtrid 28614 colinearalg 28940 vtxdun 29514 rmoun 32522 elimifd 32564 satfvsuclem2 35345 satf0 35357 dfon2lem5 35769 seglelin 36098 bj-prmoore 37098 wl-ifp4impr 37450 wl-df4-3mintru2 37470 poimirlem30 37637 poimirlem31 37638 cnambfre 37655 fimgmcyclem 42520 expdioph 43012 dflim5 43319 rp-isfinite6 43508 uneqsn 44015 |
Copyright terms: Public domain | W3C validator |