Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > andir | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
andir | ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 1004 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) | |
2 | ancom 460 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑 ∨ 𝜓))) | |
3 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜑)) | |
4 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
5 | 3, 4 | orbi12i 911 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) |
6 | 1, 2, 5 | 3bitr4i 302 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: anddi 1007 cases 1039 cador 1611 rexun 4120 rabun2 4244 reuun2 4245 uniprg 4853 xpundir 5647 coundi 6140 mptun 6563 tpostpos 8033 ssfi 8918 wemapsolem 9239 ltxr 12780 hashbclem 14092 hashf1lem2 14098 pythagtriplem2 16446 pythagtrip 16463 vdwapun 16603 legtrid 26856 colinearalg 27181 vtxdun 27751 rmoun 30743 elimifd 30787 satfvsuclem2 33222 satf0 33234 dfon2lem5 33669 frxp2 33718 nosep2o 33812 seglelin 34345 bj-prmoore 35213 wl-ifp4impr 35565 wl-df4-3mintru2 35585 poimirlem30 35734 poimirlem31 35735 cnambfre 35752 expdioph 40761 rp-isfinite6 41023 uneqsn 41522 |
Copyright terms: Public domain | W3C validator |