Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > andir | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
andir | ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 1005 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) | |
2 | ancom 461 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑 ∨ 𝜓))) | |
3 | ancom 461 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜑)) | |
4 | ancom 461 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
5 | 3, 4 | orbi12i 912 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: anddi 1008 cases 1040 cador 1610 rexun 4124 rabun2 4247 reuun2 4248 uniprg 4856 xpundir 5656 coundi 6151 mptun 6579 tpostpos 8062 ssfi 8956 wemapsolem 9309 ltxr 12851 hashbclem 14164 hashf1lem2 14170 pythagtriplem2 16518 pythagtrip 16535 vdwapun 16675 legtrid 26952 colinearalg 27278 vtxdun 27848 rmoun 30842 elimifd 30886 satfvsuclem2 33322 satf0 33334 dfon2lem5 33763 frxp2 33791 nosep2o 33885 seglelin 34418 bj-prmoore 35286 wl-ifp4impr 35638 wl-df4-3mintru2 35658 poimirlem30 35807 poimirlem31 35808 cnambfre 35825 expdioph 40845 rp-isfinite6 41125 uneqsn 41633 |
Copyright terms: Public domain | W3C validator |