| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > andir | Structured version Visualization version GIF version | ||
| Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| andir | ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | andi 1009 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) | |
| 2 | ancom 460 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑 ∨ 𝜓))) | |
| 3 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜑)) | |
| 4 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 5 | 3, 4 | orbi12i 914 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: anddi 1012 cases 1042 cador 1609 rexun 4146 rabun2 4274 reuun2 4275 uniprg 4875 xpundir 5686 coundi 6194 mptun 6627 frxp2 8074 tpostpos 8176 ssfi 9082 wemapsolem 9436 ltxr 13014 hashbclem 14359 hashf1lem2 14363 pythagtriplem2 16729 pythagtrip 16746 vdwapun 16886 nosep2o 27622 legtrid 28570 colinearalg 28889 vtxdun 29461 rmoun 32471 elimifd 32521 satfvsuclem2 35402 satf0 35414 dfon2lem5 35827 seglelin 36156 bj-prmoore 37155 wl-ifp4impr 37507 wl-df4-3mintru2 37527 poimirlem30 37696 poimirlem31 37697 cnambfre 37714 fimgmcyclem 42572 expdioph 43062 dflim5 43368 rp-isfinite6 43557 uneqsn 44064 |
| Copyright terms: Public domain | W3C validator |