![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > andir | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
andir | ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 1000 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) | |
2 | ancom 461 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑 ∨ 𝜓))) | |
3 | ancom 461 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜑)) | |
4 | ancom 461 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
5 | 3, 4 | orbi12i 907 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) |
6 | 1, 2, 5 | 3bitr4i 304 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 ∨ wo 842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 |
This theorem is referenced by: anddi 1003 cases 1033 cador 1588 rexun 4082 rabun2 4197 reuun2 4201 xpundir 5499 coundi 5967 mptun 6354 tpostpos 7754 wemapsolem 8850 ltxr 12349 hashbclem 13646 hashf1lem2 13650 pythagtriplem2 15971 pythagtrip 15988 vdwapun 16127 legtrid 26047 colinearalg 26367 vtxdun 26934 elimifd 29966 satfvsuclem2 32171 satf0 32181 dfon2lem5 32585 seglelin 33131 poimirlem30 34399 poimirlem31 34400 cnambfre 34417 expdioph 39056 rp-isfinite6 39320 uneqsn 39809 |
Copyright terms: Public domain | W3C validator |