| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > andir | Structured version Visualization version GIF version | ||
| Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| andir | ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | andi 1009 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) | |
| 2 | ancom 460 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑 ∨ 𝜓))) | |
| 3 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜑)) | |
| 4 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 5 | 3, 4 | orbi12i 914 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: anddi 1012 cases 1042 cador 1608 rexun 4149 rabun2 4277 reuun2 4278 uniprg 4877 xpundir 5693 coundi 6200 mptun 6632 frxp2 8084 tpostpos 8186 ssfi 9097 wemapsolem 9461 ltxr 13035 hashbclem 14377 hashf1lem2 14381 pythagtriplem2 16747 pythagtrip 16764 vdwapun 16904 nosep2o 27610 legtrid 28554 colinearalg 28873 vtxdun 29445 rmoun 32456 elimifd 32505 satfvsuclem2 35335 satf0 35347 dfon2lem5 35763 seglelin 36092 bj-prmoore 37091 wl-ifp4impr 37443 wl-df4-3mintru2 37463 poimirlem30 37632 poimirlem31 37633 cnambfre 37650 fimgmcyclem 42509 expdioph 42999 dflim5 43305 rp-isfinite6 43494 uneqsn 44001 |
| Copyright terms: Public domain | W3C validator |