| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > andir | Structured version Visualization version GIF version | ||
| Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| andir | ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | andi 1009 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) | |
| 2 | ancom 460 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑 ∨ 𝜓))) | |
| 3 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜑)) | |
| 4 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 5 | 3, 4 | orbi12i 914 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: anddi 1012 cases 1042 cador 1608 rexun 4171 rabun2 4299 reuun2 4300 uniprg 4899 xpundir 5724 coundi 6236 mptun 6684 frxp2 8143 tpostpos 8245 ssfi 9187 wemapsolem 9564 ltxr 13131 hashbclem 14470 hashf1lem2 14474 pythagtriplem2 16837 pythagtrip 16854 vdwapun 16994 nosep2o 27646 legtrid 28570 colinearalg 28889 vtxdun 29461 rmoun 32475 elimifd 32524 satfvsuclem2 35382 satf0 35394 dfon2lem5 35805 seglelin 36134 bj-prmoore 37133 wl-ifp4impr 37485 wl-df4-3mintru2 37505 poimirlem30 37674 poimirlem31 37675 cnambfre 37692 fimgmcyclem 42556 expdioph 43047 dflim5 43353 rp-isfinite6 43542 uneqsn 44049 |
| Copyright terms: Public domain | W3C validator |