![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > andir | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
andir | ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 1007 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) | |
2 | ancom 462 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑 ∨ 𝜓))) | |
3 | ancom 462 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜑)) | |
4 | ancom 462 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
5 | 3, 4 | orbi12i 914 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 |
This theorem is referenced by: anddi 1010 cases 1042 cador 1610 rexun 4191 rabun2 4314 reuun2 4315 uniprg 4926 xpundir 5746 coundi 6247 mptun 6697 frxp2 8130 tpostpos 8231 ssfi 9173 wemapsolem 9545 ltxr 13095 hashbclem 14411 hashf1lem2 14417 pythagtriplem2 16750 pythagtrip 16767 vdwapun 16907 nosep2o 27185 legtrid 27842 colinearalg 28168 vtxdun 28738 rmoun 31734 elimifd 31775 satfvsuclem2 34351 satf0 34363 dfon2lem5 34759 seglelin 35088 bj-prmoore 35996 wl-ifp4impr 36348 wl-df4-3mintru2 36368 poimirlem30 36518 poimirlem31 36519 cnambfre 36536 expdioph 41762 dflim5 42079 rp-isfinite6 42269 uneqsn 42776 |
Copyright terms: Public domain | W3C validator |