Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > andir | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
andir | ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 1008 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) | |
2 | ancom 464 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑 ∨ 𝜓))) | |
3 | ancom 464 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜑)) | |
4 | ancom 464 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
5 | 3, 4 | orbi12i 915 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) |
6 | 1, 2, 5 | 3bitr4i 306 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 |
This theorem is referenced by: anddi 1011 cases 1043 cador 1615 rexun 4104 rabun2 4228 reuun2 4229 uniprg 4836 xpundir 5618 coundi 6111 mptun 6524 tpostpos 7988 ssfi 8851 wemapsolem 9166 ltxr 12707 hashbclem 14016 hashf1lem2 14022 pythagtriplem2 16370 pythagtrip 16387 vdwapun 16527 legtrid 26682 colinearalg 27001 vtxdun 27569 rmoun 30561 elimifd 30605 satfvsuclem2 33035 satf0 33047 dfon2lem5 33482 frxp2 33528 nosep2o 33622 seglelin 34155 bj-prmoore 35021 wl-ifp4impr 35375 wl-df4-3mintru2 35395 poimirlem30 35544 poimirlem31 35545 cnambfre 35562 expdioph 40548 rp-isfinite6 40810 uneqsn 41310 |
Copyright terms: Public domain | W3C validator |