| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > andir | Structured version Visualization version GIF version | ||
| Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| andir | ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | andi 1009 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) | |
| 2 | ancom 460 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑 ∨ 𝜓))) | |
| 3 | ancom 460 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜑)) | |
| 4 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 5 | 3, 4 | orbi12i 914 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜒 ∧ 𝜑) ∨ (𝜒 ∧ 𝜓))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: anddi 1012 cases 1042 cador 1608 rexun 4162 rabun2 4290 reuun2 4291 uniprg 4890 xpundir 5711 coundi 6223 mptun 6667 frxp2 8126 tpostpos 8228 ssfi 9143 wemapsolem 9510 ltxr 13082 hashbclem 14424 hashf1lem2 14428 pythagtriplem2 16795 pythagtrip 16812 vdwapun 16952 nosep2o 27601 legtrid 28525 colinearalg 28844 vtxdun 29416 rmoun 32430 elimifd 32479 satfvsuclem2 35354 satf0 35366 dfon2lem5 35782 seglelin 36111 bj-prmoore 37110 wl-ifp4impr 37462 wl-df4-3mintru2 37482 poimirlem30 37651 poimirlem31 37652 cnambfre 37669 fimgmcyclem 42528 expdioph 43019 dflim5 43325 rp-isfinite6 43514 uneqsn 44021 |
| Copyright terms: Public domain | W3C validator |