MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  andir Structured version   Visualization version   GIF version

Theorem andir 1001
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
andir (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))

Proof of Theorem andir
StepHypRef Expression
1 andi 1000 . 2 ((𝜒 ∧ (𝜑𝜓)) ↔ ((𝜒𝜑) ∨ (𝜒𝜓)))
2 ancom 461 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑𝜓)))
3 ancom 461 . . 3 ((𝜑𝜒) ↔ (𝜒𝜑))
4 ancom 461 . . 3 ((𝜓𝜒) ↔ (𝜒𝜓))
53, 4orbi12i 907 . 2 (((𝜑𝜒) ∨ (𝜓𝜒)) ↔ ((𝜒𝜑) ∨ (𝜒𝜓)))
61, 2, 53bitr4i 304 1 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  wo 842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843
This theorem is referenced by:  anddi  1003  cases  1033  cador  1588  rexun  4082  rabun2  4197  reuun2  4201  xpundir  5499  coundi  5967  mptun  6354  tpostpos  7754  wemapsolem  8850  ltxr  12349  hashbclem  13646  hashf1lem2  13650  pythagtriplem2  15971  pythagtrip  15988  vdwapun  16127  legtrid  26047  colinearalg  26367  vtxdun  26934  elimifd  29966  satfvsuclem2  32171  satf0  32181  dfon2lem5  32585  seglelin  33131  poimirlem30  34399  poimirlem31  34400  cnambfre  34417  expdioph  39056  rp-isfinite6  39320  uneqsn  39809
  Copyright terms: Public domain W3C validator