NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfint3 GIF version

Theorem dfint3 4319
Description: Alternate definition of class intersection for the existence proof. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
dfint3 A = ∼ ⋃1(kSkk A)

Proof of Theorem dfint3
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2863 . . . . . . 7 x V
21eluni1 4174 . . . . . 6 (x 1(kSkk A) ↔ {x} (kSkk A))
3 snex 4112 . . . . . . 7 {x} V
43elimak 4260 . . . . . 6 ({x} (kSkk A) ↔ y Ay, {x}⟫ kSk )
52, 4bitri 240 . . . . 5 (x 1(kSkk A) ↔ y Ay, {x}⟫ kSk )
6 vex 2863 . . . . . . . 8 y V
76, 3opkelcnvk 4251 . . . . . . 7 (⟪y, {x}⟫ kSk ↔ ⟪{x}, ySk )
8 opkex 4114 . . . . . . . 8 ⟪{x}, y V
98elcompl 3226 . . . . . . 7 (⟪{x}, ySk ↔ ¬ ⟪{x}, y Sk )
101, 6elssetk 4271 . . . . . . . 8 (⟪{x}, y Skx y)
1110notbii 287 . . . . . . 7 (¬ ⟪{x}, y Sk ↔ ¬ x y)
127, 9, 113bitri 262 . . . . . 6 (⟪y, {x}⟫ kSk ↔ ¬ x y)
1312rexbii 2640 . . . . 5 (y Ay, {x}⟫ kSky A ¬ x y)
14 rexnal 2626 . . . . 5 (y A ¬ x y ↔ ¬ y A x y)
155, 13, 143bitri 262 . . . 4 (x 1(kSkk A) ↔ ¬ y A x y)
1615con2bii 322 . . 3 (y A x y ↔ ¬ x 1(kSkk A))
171elint2 3934 . . 3 (x Ay A x y)
181elcompl 3226 . . 3 (x ∼ ⋃1(kSkk A) ↔ ¬ x 1(kSkk A))
1916, 17, 183bitr4i 268 . 2 (x Ax ∼ ⋃1(kSkk A))
2019eqriv 2350 1 A = ∼ ⋃1(kSkk A)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1642   wcel 1710  wral 2615  wrex 2616  ccompl 3206  {csn 3738  cint 3927  copk 4058  1cuni1 4134  kccnvk 4176  k cimak 4180   Sk cssetk 4184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-uni1 4139  df-cnvk 4187  df-imak 4190  df-ssetk 4194
This theorem is referenced by:  intexg  4320
  Copyright terms: Public domain W3C validator