New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elimak | Unicode version |
Description: Membership in a Kuratowski image. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
elimak.1 |
Ref | Expression |
---|---|
elimak | k |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimak.1 | . 2 | |
2 | elimakg 4257 | . 2 k | |
3 | 1, 2 | ax-mp 5 | 1 k |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wcel 1710 wrex 2615 cvv 2859 copk 4057 kcimak 4179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 df-sn 3741 df-pr 3742 df-opk 4058 df-imak 4189 |
This theorem is referenced by: opkelimagekg 4271 imacok 4282 elimaksn 4283 dfimak2 4298 dfuni3 4315 dfint3 4318 ndisjrelk 4323 dfpw2 4327 dfaddc2 4381 dfnnc2 4395 nnc0suc 4412 nncaddccl 4419 nnsucelrlem1 4424 nndisjeq 4429 preaddccan2lem1 4454 ltfinex 4464 ltfintrilem1 4465 ssfin 4470 eqpwrelk 4478 eqpw1relk 4479 ncfinraiselem2 4480 ncfinlowerlem1 4482 eqtfinrelk 4486 evenfinex 4503 oddfinex 4504 evenodddisjlem1 4515 nnadjoinlem1 4519 nnpweqlem1 4522 srelk 4524 sfintfinlem1 4531 tfinnnlem1 4533 spfinex 4537 vfinspss 4551 vfinspclt 4552 vfinncsp 4554 dfphi2 4569 dfop2lem1 4573 dfop2lem2 4574 dfop2 4575 dfproj12 4576 dfproj22 4577 phialllem1 4616 setconslem2 4732 setconslem3 4733 setconslem4 4734 setconslem6 4736 setconslem7 4737 df1st2 4738 dfswap2 4741 dfima2 4745 |
Copyright terms: Public domain | W3C validator |