NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqeq12i GIF version

Theorem eqeq12i 2366
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
eqeq12i.1 A = B
eqeq12i.2 C = D
Assertion
Ref Expression
eqeq12i (A = CB = D)

Proof of Theorem eqeq12i
StepHypRef Expression
1 eqeq12i.1 . 2 A = B
2 eqeq12i.2 . 2 C = D
3 eqeq12 2365 . 2 ((A = B C = D) → (A = CB = D))
41, 2, 3mp2an 653 1 (A = CB = D)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346
This theorem is referenced by:  rabbi  2790  sbceqg  3153  unineq  3506  preqr2  4126  opkthg  4132  preaddccan2  4456  ltfinirr  4458  addccan1  4561  rncoeq  4976  swapf1o  5512  eqfnov  5590  eqncg  6127  ncseqnc  6129  tc11  6229  taddc  6230  muc0or  6253  addccan2nc  6266  nnc3n3p1  6279
  Copyright terms: Public domain W3C validator