| Step | Hyp | Ref
 | Expression | 
| 1 |   | elncs 6120 | 
. . . . 5
       NC          Nc    | 
| 2 |   | elncs 6120 | 
. . . . 5
       NC          Nc    | 
| 3 | 1, 2 | anbi12i 678 | 
. . . 4
        NC       NC            
Nc           
Nc     | 
| 4 |   | eeanv 1913 | 
. . . 4
            Nc         Nc           
  Nc           
Nc     | 
| 5 | 3, 4 | bitr4i 243 | 
. . 3
        NC       NC              Nc         Nc     | 
| 6 |   | vex 2863 | 
. . . . . . . 8
        | 
| 7 |   | vex 2863 | 
. . . . . . . 8
        | 
| 8 | 6, 7 | mucnc 6132 | 
. . . . . . 7
    Nc   ·c Nc      Nc   
     | 
| 9 |   | df0c2 6138 | 
. . . . . . 7
 
0c  
Nc   | 
| 10 | 8, 9 | eqeq12i 2366 | 
. . . . . 6
     Nc  
·c Nc     
0c   Nc           Nc    | 
| 11 | 6, 7 | xpex 5116 | 
. . . . . . . . 9
              | 
| 12 | 11 | eqnc 6128 | 
. . . . . . . 8
    Nc          
Nc                  | 
| 13 |   | en0 6043 | 
. . . . . . . 8
                        
     | 
| 14 | 12, 13 | bitri 240 | 
. . . . . . 7
    Nc          
Nc              
   | 
| 15 |   | xpeq0 5047 | 
. . . . . . . 8
              
 
                 | 
| 16 |   | nceq 6109 | 
. . . . . . . . 9
        
  Nc     Nc    | 
| 17 |   | nceq 6109 | 
. . . . . . . . 9
        
  Nc     Nc    | 
| 18 | 16, 17 | orim12i 502 | 
. . . . . . . 8
                       Nc     Nc     Nc     Nc     | 
| 19 | 15, 18 | sylbi 187 | 
. . . . . . 7
              
    Nc     Nc     Nc     Nc     | 
| 20 | 14, 19 | sylbi 187 | 
. . . . . 6
    Nc          
Nc       Nc     Nc     Nc    
Nc     | 
| 21 | 10, 20 | sylbi 187 | 
. . . . 5
     Nc  
·c Nc     
0c     Nc     Nc     Nc    
Nc     | 
| 22 |   | oveq12 5533 | 
. . . . . . 7
        Nc         Nc        
·c        Nc  
·c Nc     | 
| 23 | 22 | eqeq1d 2361 | 
. . . . . 6
        Nc         Nc         
·c      0c     Nc   ·c Nc      0c   | 
| 24 |   | eqeq1 2359 | 
. . . . . . . . 9
       Nc          0c   Nc    
0c   | 
| 25 | 24 | adantr 451 | 
. . . . . . . 8
        Nc         Nc           0c   Nc    
0c   | 
| 26 | 9 | eqeq2i 2363 | 
. . . . . . . 8
    Nc    
0c   Nc     Nc    | 
| 27 | 25, 26 | syl6bb 252 | 
. . . . . . 7
        Nc         Nc           0c   Nc     Nc     | 
| 28 |   | eqeq1 2359 | 
. . . . . . . . 9
       Nc          0c   Nc    
0c   | 
| 29 | 9 | eqeq2i 2363 | 
. . . . . . . . 9
    Nc    
0c   Nc     Nc    | 
| 30 | 28, 29 | syl6bb 252 | 
. . . . . . . 8
       Nc          0c   Nc     Nc     | 
| 31 | 30 | adantl 452 | 
. . . . . . 7
        Nc         Nc           0c   Nc     Nc     | 
| 32 | 27, 31 | orbi12d 690 | 
. . . . . 6
        Nc         Nc            0c      
0c 
 
  Nc     Nc     Nc    
Nc      | 
| 33 | 23, 32 | imbi12d 311 | 
. . . . 5
        Nc         Nc           ·c     
0c        0c      
0c        Nc  
·c Nc     
0c     Nc     Nc     Nc    
Nc       | 
| 34 | 21, 33 | mpbiri 224 | 
. . . 4
        Nc         Nc         
·c      0c       
0c       0c    | 
| 35 | 34 | exlimivv 1635 | 
. . 3
            Nc         Nc         
·c      0c       
0c       0c    | 
| 36 | 5, 35 | sylbi 187 | 
. 2
        NC       NC         ·c   
  0c
      
0c       0c    | 
| 37 |   | 0cnc 6139 | 
. . . . . . 7
 
0c  
NC | 
| 38 |   | muccom 6135 | 
. . . . . . 7
    0c   NC       NC      0c ·c     
   ·c
0c   | 
| 39 | 37, 38 | mpan 651 | 
. . . . . 6
       NC    0c ·c     
   ·c
0c   | 
| 40 |   | muc0 6143 | 
. . . . . 6
       NC     
·c 0c    0c  | 
| 41 | 39, 40 | eqtrd 2385 | 
. . . . 5
       NC    0c ·c     
0c  | 
| 42 |   | oveq1 5531 | 
. . . . . 6
       0c     
·c       0c ·c
    | 
| 43 | 42 | eqeq1d 2361 | 
. . . . 5
       0c      
·c      0c    0c
·c      0c   | 
| 44 | 41, 43 | syl5ibrcom 213 | 
. . . 4
       NC        0c      ·c     
0c   | 
| 45 | 44 | adantl 452 | 
. . 3
        NC       NC          0c     
·c      0c   | 
| 46 |   | muc0 6143 | 
. . . . 5
       NC     
·c 0c    0c  | 
| 47 |   | oveq2 5532 | 
. . . . . 6
       0c     
·c         ·c 0c   | 
| 48 | 47 | eqeq1d 2361 | 
. . . . 5
       0c      
·c      0c      ·c
0c 
 
0c   | 
| 49 | 46, 48 | syl5ibrcom 213 | 
. . . 4
       NC        0c      ·c     
0c   | 
| 50 | 49 | adantr 451 | 
. . 3
        NC       NC          0c     
·c      0c   | 
| 51 | 45, 50 | jaod 369 | 
. 2
        NC       NC          
0c       0c      
·c      0c   | 
| 52 | 36, 51 | impbid 183 | 
1
        NC       NC         ·c   
  0c
 
     0c      
0c    |