NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  taddc Unicode version

Theorem taddc 6230
Description: T raising rule for cardinal sum. (Contributed by SF, 11-Mar-2015.)
Assertion
Ref Expression
taddc NC NC NC Tc Tc NC Tc
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem taddc
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elncs 6120 . . . . . 6 NC Nc
2 elncs 6120 . . . . . 6 NC Nc
3 elncs 6120 . . . . . 6 NC Nc
41, 2, 33anbi123i 1140 . . . . 5 NC NC NC Nc Nc Nc
5 eeeanv 1914 . . . . 5 Nc Nc Nc Nc Nc Nc
64, 5bitr4i 243 . . . 4 NC NC NC Nc Nc Nc
7 vex 2863 . . . . . . . . . . 11
87tcnc 6226 . . . . . . . . . 10 Tc Nc Nc 1
9 vex 2863 . . . . . . . . . . . 12
109tcnc 6226 . . . . . . . . . . 11 Tc Nc Nc 1
1110addceq1i 4387 . . . . . . . . . 10 Tc Nc Nc Nc 1 Nc
128, 11eqeq12i 2366 . . . . . . . . 9 Tc Nc Tc Nc Nc Nc 1 Nc 1 Nc
13 eqcom 2355 . . . . . . . . 9 Nc 1 Nc 1 Nc Nc 1 Nc Nc 1
149pw1ex 4304 . . . . . . . . . . . 12 1
1514ncelncsi 6122 . . . . . . . . . . 11 Nc 1 NC
16 vex 2863 . . . . . . . . . . . 12
1716ncelncsi 6122 . . . . . . . . . . 11 Nc NC
18 ncaddccl 6145 . . . . . . . . . . 11 Nc 1 NC Nc NC Nc 1 Nc NC
1915, 17, 18mp2an 653 . . . . . . . . . 10 Nc 1 Nc NC
20 ncseqnc 6129 . . . . . . . . . 10 Nc 1 Nc NC Nc 1 Nc Nc 1 1 Nc 1 Nc
2119, 20ax-mp 5 . . . . . . . . 9 Nc 1 Nc Nc 1 1 Nc 1 Nc
2212, 13, 213bitri 262 . . . . . . . 8 Tc Nc Tc Nc Nc 1 Nc 1 Nc
23 eladdc 4399 . . . . . . . . 9 1 Nc 1 Nc Nc 1 Nc 1
24 vex 2863 . . . . . . . . . . . . . 14
25 vex 2863 . . . . . . . . . . . . . 14
2624, 25pw1equn 4332 . . . . . . . . . . . . 13 1 1 1
27 simp3 957 . . . . . . . . . . . . . . . 16 1 1 1
28 elnc 6126 . . . . . . . . . . . . . . . . 17 Nc
29 ensym 6038 . . . . . . . . . . . . . . . . . 18
30 breq2 4644 . . . . . . . . . . . . . . . . . . 19 1 1
3130biimpcd 215 . . . . . . . . . . . . . . . . . 18 1 1
3229, 31sylbi 187 . . . . . . . . . . . . . . . . 17 1 1
3328, 32sylbi 187 . . . . . . . . . . . . . . . 16 Nc 1 1
3427, 33syl5 28 . . . . . . . . . . . . . . 15 Nc 1 1 1
3534eximdv 1622 . . . . . . . . . . . . . 14 Nc 1 1 1
3635exlimdv 1636 . . . . . . . . . . . . 13 Nc 1 1 1
3726, 36syl5bi 208 . . . . . . . . . . . 12 Nc 1 1
3837adantld 453 . . . . . . . . . . 11 Nc 1 1
3938rexlimiv 2733 . . . . . . . . . 10 Nc 1 1
4039rexlimivw 2735 . . . . . . . . 9 Nc 1 Nc 1 1
4123, 40sylbi 187 . . . . . . . 8 1 Nc 1 Nc 1
4222, 41sylbi 187 . . . . . . 7 Tc Nc Tc Nc Nc 1
43 tceq 6159 . . . . . . . . . 10 Nc Tc Tc Nc
44433ad2ant1 976 . . . . . . . . 9 Nc Nc Nc Tc Tc Nc
45 tceq 6159 . . . . . . . . . . . 12 Nc Tc Tc Nc
4645adantr 451 . . . . . . . . . . 11 Nc Nc Tc Tc Nc
47 simpr 447 . . . . . . . . . . 11 Nc Nc Nc
4846, 47addceq12d 4392 . . . . . . . . . 10 Nc Nc Tc Tc Nc Nc
49483adant1 973 . . . . . . . . 9 Nc Nc Nc Tc Tc Nc Nc
5044, 49eqeq12d 2367 . . . . . . . 8 Nc Nc Nc Tc Tc Tc Nc Tc Nc Nc
51 eqeq1 2359 . . . . . . . . . . 11 Nc Nc 1 Nc Nc 1
5216eqnc 6128 . . . . . . . . . . 11 Nc Nc 1 1
5351, 52syl6bb 252 . . . . . . . . . 10 Nc Nc 1 1
5453exbidv 1626 . . . . . . . . 9 Nc Nc 1 1
55543ad2ant3 978 . . . . . . . 8 Nc Nc Nc Nc 1 1
5650, 55imbi12d 311 . . . . . . 7 Nc Nc Nc Tc Tc Nc 1 Tc Nc Tc Nc Nc 1
5742, 56mpbiri 224 . . . . . 6 Nc Nc Nc Tc Tc Nc 1
5857exlimiv 1634 . . . . 5 Nc Nc Nc Tc Tc Nc 1
5958exlimivv 1635 . . . 4 Nc Nc Nc Tc Tc Nc 1
606, 59sylbi 187 . . 3 NC NC NC Tc Tc Nc 1
6160imp 418 . 2 NC NC NC Tc Tc Nc 1
62 df-rex 2621 . . 3 NC Tc NC Tc
63 elncs 6120 . . . . . 6 NC Nc
6463anbi1i 676 . . . . 5 NC Tc Nc Tc
65 19.41v 1901 . . . . 5 Nc Tc Nc Tc
6664, 65bitr4i 243 . . . 4 NC Tc Nc Tc
6766exbii 1582 . . 3 NC Tc Nc Tc
68 excom 1741 . . . 4 Nc Tc Nc Tc
69 ncex 6118 . . . . . 6 Nc
70 tceq 6159 . . . . . . . 8 Nc Tc Tc Nc
71 vex 2863 . . . . . . . . 9
7271tcnc 6226 . . . . . . . 8 Tc Nc Nc 1
7370, 72syl6eq 2401 . . . . . . 7 Nc Tc Nc 1
7473eqeq2d 2364 . . . . . 6 Nc Tc Nc 1
7569, 74ceqsexv 2895 . . . . 5 Nc Tc Nc 1
7675exbii 1582 . . . 4 Nc Tc Nc 1
7768, 76bitri 240 . . 3 Nc Tc Nc 1
7862, 67, 773bitri 262 . 2 NC Tc Nc 1
7961, 78sylibr 203 1 NC NC NC Tc Tc NC Tc
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   w3a 934  wex 1541   wceq 1642   wcel 1710  wrex 2616   cun 3208   cin 3209  c0 3551  1 cpw1 4136   cplc 4376   class class class wbr 4640   cen 6029   NC cncs 6089   Nc cnc 6092   Tc ctc 6094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-nc 6102  df-tc 6104
This theorem is referenced by:  tlecg  6231
  Copyright terms: Public domain W3C validator