New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > frecxpg | Unicode version |
Description: Subset relationship for the finite recursive function generator. (Contributed by Scott Fenton, 31-Jul-2019.) |
Ref | Expression |
---|---|
frecxpg.1 | FRec |
Ref | Expression |
---|---|
frecxpg | Nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frecxpg.1 | . 2 FRec | |
2 | eqid 2353 | . . . . 5 | |
3 | freceq12 6311 | . . . . 5 FRec FRec | |
4 | 2, 3 | mpan2 652 | . . . 4 FRec FRec |
5 | rneq 4956 | . . . . . 6 | |
6 | 5 | uneq1d 3417 | . . . . 5 |
7 | 6 | xpeq2d 4808 | . . . 4 Nn Nn |
8 | 4, 7 | sseq12d 3300 | . . 3 FRec Nn FRec Nn |
9 | eqid 2353 | . . . 4 FRec FRec | |
10 | vex 2862 | . . . 4 | |
11 | 9, 10 | frecxp 6314 | . . 3 FRec Nn |
12 | 8, 11 | vtoclg 2914 | . 2 FRec Nn |
13 | 1, 12 | syl5eqss 3315 | 1 Nn |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 wcel 1710 cun 3207 wss 3257 csn 3737 Nn cnnc 4373 cxp 4770 crn 4773 FRec cfrec 6309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-csb 3137 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-iun 3971 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-fo 4793 df-fv 4795 df-2nd 4797 df-ov 5526 df-oprab 5528 df-mpt 5652 df-mpt2 5654 df-txp 5736 df-pprod 5738 df-fix 5740 df-cup 5742 df-disj 5744 df-addcfn 5746 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-clos1 5873 df-frec 6310 |
This theorem is referenced by: dmfrec 6316 frecsuc 6322 |
Copyright terms: Public domain | W3C validator |