New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fun11 | Unicode version |
Description: Two ways of stating that is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. (Contributed by NM, 17-Jan-2006.) (Revised by Scott Fenton, 18-Apr-2021.) |
Ref | Expression |
---|---|
fun11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 609 | . . . . . . . 8 | |
2 | 1 | imbi2i 303 | . . . . . . 7 |
3 | pm4.76 836 | . . . . . . 7 | |
4 | bi2.04 350 | . . . . . . . 8 | |
5 | bi2.04 350 | . . . . . . . 8 | |
6 | 4, 5 | anbi12i 678 | . . . . . . 7 |
7 | 2, 3, 6 | 3bitr2i 264 | . . . . . 6 |
8 | 7 | 2albii 1567 | . . . . 5 |
9 | 19.26-2 1594 | . . . . 5 | |
10 | alcom 1737 | . . . . . . 7 | |
11 | nfv 1619 | . . . . . . . . 9 | |
12 | breq1 4643 | . . . . . . . . . . 11 | |
13 | 12 | anbi1d 685 | . . . . . . . . . 10 |
14 | 13 | imbi1d 308 | . . . . . . . . 9 |
15 | 11, 14 | equsal 1960 | . . . . . . . 8 |
16 | 15 | albii 1566 | . . . . . . 7 |
17 | 10, 16 | bitri 240 | . . . . . 6 |
18 | nfv 1619 | . . . . . . . 8 | |
19 | breq2 4644 | . . . . . . . . . 10 | |
20 | 19 | anbi1d 685 | . . . . . . . . 9 |
21 | 20 | imbi1d 308 | . . . . . . . 8 |
22 | 18, 21 | equsal 1960 | . . . . . . 7 |
23 | 22 | albii 1566 | . . . . . 6 |
24 | 17, 23 | anbi12i 678 | . . . . 5 |
25 | 8, 9, 24 | 3bitri 262 | . . . 4 |
26 | 25 | 2albii 1567 | . . 3 |
27 | 19.26-2 1594 | . . 3 | |
28 | 26, 27 | bitr2i 241 | . 2 |
29 | dffun2 5120 | . . . 4 | |
30 | alcom 1737 | . . . . 5 | |
31 | 30 | albii 1566 | . . . 4 |
32 | 29, 31 | bitri 240 | . . 3 |
33 | brcnv 4893 | . . . . . . . 8 | |
34 | brcnv 4893 | . . . . . . . 8 | |
35 | 33, 34 | anbi12i 678 | . . . . . . 7 |
36 | 35 | imbi1i 315 | . . . . . 6 |
37 | 36 | albii 1566 | . . . . 5 |
38 | 37 | 2albii 1567 | . . . 4 |
39 | dffun2 5120 | . . . 4 | |
40 | alrot3 1738 | . . . 4 | |
41 | 38, 39, 40 | 3bitr4i 268 | . . 3 |
42 | 32, 41 | anbi12i 678 | . 2 |
43 | alrot4 1739 | . 2 | |
44 | 28, 42, 43 | 3bitr4i 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 class class class wbr 4640 ccnv 4772 wfun 4776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-id 4768 df-cnv 4786 df-fun 4790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |