NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imakexg GIF version

Theorem imakexg 4300
Description: The image of a set under a set is a set. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
imakexg ((A V B W) → (Ak B) V)

Proof of Theorem imakexg
StepHypRef Expression
1 dfimak2 4299 . 2 (Ak B) = ∼ P6 ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V)))
2 1cex 4143 . . . . . 6 1c V
3 vvex 4110 . . . . . 6 V V
42, 3xpkex 4290 . . . . 5 (1c ×k V) V
54complex 4105 . . . 4 ∼ (1c ×k V) V
6 xpkexg 4289 . . . . . . 7 ((B W V V) → (B ×k V) V)
73, 6mpan2 652 . . . . . 6 (B W → (B ×k V) V)
8 inexg 4101 . . . . . 6 ((A V (B ×k V) V) → (A ∩ (B ×k V)) V)
97, 8sylan2 460 . . . . 5 ((A V B W) → (A ∩ (B ×k V)) V)
10 complexg 4100 . . . . 5 ((A ∩ (B ×k V)) V → ∼ (A ∩ (B ×k V)) V)
11 sikexg 4297 . . . . 5 ( ∼ (A ∩ (B ×k V)) V → SIk ∼ (A ∩ (B ×k V)) V)
129, 10, 113syl 18 . . . 4 ((A V B W) → SIk ∼ (A ∩ (B ×k V)) V)
13 unexg 4102 . . . 4 (( ∼ (1c ×k V) V SIk ∼ (A ∩ (B ×k V)) V) → ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) V)
145, 12, 13sylancr 644 . . 3 ((A V B W) → ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) V)
15 p6exg 4291 . . 3 (( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) V → P6 ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) V)
16 complexg 4100 . . 3 ( P6 ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) V → ∼ P6 ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) V)
1714, 15, 163syl 18 . 2 ((A V B W) → ∼ P6 ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) V)
181, 17syl5eqel 2437 1 ((A V B W) → (Ak B) V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710  Vcvv 2860  ccompl 3206  cun 3208  cin 3209  1cc1c 4135   ×k cxpk 4175   P6 cp6 4179  k cimak 4180   SIk csik 4182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-si 4084  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-xpk 4186  df-cnvk 4187  df-imak 4190  df-p6 4192  df-sik 4193
This theorem is referenced by:  imakex  4301  pw1exg  4303  cokexg  4310  imagekexg  4312  uniexg  4317  intexg  4320  pwexg  4329  addcexg  4394  phiexg  4572  opexg  4588  proj1exg  4592  proj2exg  4593  imaexg  4747  coexg  4750  siexg  4753
  Copyright terms: Public domain W3C validator