New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imakexg | GIF version |
Description: The image of a set under a set is a set. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
imakexg | ⊢ ((A ∈ V ∧ B ∈ W) → (A “k B) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfimak2 4299 | . 2 ⊢ (A “k B) = ∼ P6 ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) | |
2 | 1cex 4143 | . . . . . 6 ⊢ 1c ∈ V | |
3 | vvex 4110 | . . . . . 6 ⊢ V ∈ V | |
4 | 2, 3 | xpkex 4290 | . . . . 5 ⊢ (1c ×k V) ∈ V |
5 | 4 | complex 4105 | . . . 4 ⊢ ∼ (1c ×k V) ∈ V |
6 | xpkexg 4289 | . . . . . . 7 ⊢ ((B ∈ W ∧ V ∈ V) → (B ×k V) ∈ V) | |
7 | 3, 6 | mpan2 652 | . . . . . 6 ⊢ (B ∈ W → (B ×k V) ∈ V) |
8 | inexg 4101 | . . . . . 6 ⊢ ((A ∈ V ∧ (B ×k V) ∈ V) → (A ∩ (B ×k V)) ∈ V) | |
9 | 7, 8 | sylan2 460 | . . . . 5 ⊢ ((A ∈ V ∧ B ∈ W) → (A ∩ (B ×k V)) ∈ V) |
10 | complexg 4100 | . . . . 5 ⊢ ((A ∩ (B ×k V)) ∈ V → ∼ (A ∩ (B ×k V)) ∈ V) | |
11 | sikexg 4297 | . . . . 5 ⊢ ( ∼ (A ∩ (B ×k V)) ∈ V → SIk ∼ (A ∩ (B ×k V)) ∈ V) | |
12 | 9, 10, 11 | 3syl 18 | . . . 4 ⊢ ((A ∈ V ∧ B ∈ W) → SIk ∼ (A ∩ (B ×k V)) ∈ V) |
13 | unexg 4102 | . . . 4 ⊢ (( ∼ (1c ×k V) ∈ V ∧ SIk ∼ (A ∩ (B ×k V)) ∈ V) → ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) ∈ V) | |
14 | 5, 12, 13 | sylancr 644 | . . 3 ⊢ ((A ∈ V ∧ B ∈ W) → ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) ∈ V) |
15 | p6exg 4291 | . . 3 ⊢ (( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) ∈ V → P6 ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) ∈ V) | |
16 | complexg 4100 | . . 3 ⊢ ( P6 ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) ∈ V → ∼ P6 ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) ∈ V) | |
17 | 14, 15, 16 | 3syl 18 | . 2 ⊢ ((A ∈ V ∧ B ∈ W) → ∼ P6 ( ∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B ×k V))) ∈ V) |
18 | 1, 17 | syl5eqel 2437 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → (A “k B) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 Vcvv 2860 ∼ ccompl 3206 ∪ cun 3208 ∩ cin 3209 1cc1c 4135 ×k cxpk 4175 P6 cp6 4179 “k cimak 4180 SIk csik 4182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-si 4084 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-xpk 4186 df-cnvk 4187 df-imak 4190 df-p6 4192 df-sik 4193 |
This theorem is referenced by: imakex 4301 pw1exg 4303 cokexg 4310 imagekexg 4312 uniexg 4317 intexg 4320 pwexg 4329 addcexg 4394 phiexg 4572 opexg 4588 proj1exg 4592 proj2exg 4593 imaexg 4747 coexg 4750 siexg 4753 |
Copyright terms: Public domain | W3C validator |