New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mucass | Unicode version |
Description: Cardinal multiplication associates. Theorem XI.2.29 of [Rosser] p. 378. (Contributed by SF, 10-Mar-2015.) |
Ref | Expression |
---|---|
mucass | NC NC NC ·c ·c ·c ·c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elncs 6120 | . . . 4 NC Nc | |
2 | elncs 6120 | . . . 4 NC Nc | |
3 | elncs 6120 | . . . 4 NC Nc | |
4 | 1, 2, 3 | 3anbi123i 1140 | . . 3 NC NC NC Nc Nc Nc |
5 | eeeanv 1914 | . . 3 Nc Nc Nc Nc Nc Nc | |
6 | 4, 5 | bitr4i 243 | . 2 NC NC NC Nc Nc Nc |
7 | vex 2863 | . . . . . . . 8 | |
8 | vex 2863 | . . . . . . . 8 | |
9 | vex 2863 | . . . . . . . 8 | |
10 | 7, 8, 9 | xpassen 6058 | . . . . . . 7 |
11 | 7, 8 | xpex 5116 | . . . . . . . . 9 |
12 | 11, 9 | xpex 5116 | . . . . . . . 8 |
13 | 12 | eqnc 6128 | . . . . . . 7 Nc Nc |
14 | 10, 13 | mpbir 200 | . . . . . 6 Nc Nc |
15 | 7, 8 | mucnc 6132 | . . . . . . . 8 Nc ·c Nc Nc |
16 | 15 | oveq1i 5534 | . . . . . . 7 Nc ·c Nc ·c Nc Nc ·c Nc |
17 | 11, 9 | mucnc 6132 | . . . . . . 7 Nc ·c Nc Nc |
18 | 16, 17 | eqtri 2373 | . . . . . 6 Nc ·c Nc ·c Nc Nc |
19 | 8, 9 | mucnc 6132 | . . . . . . . 8 Nc ·c Nc Nc |
20 | 19 | oveq2i 5535 | . . . . . . 7 Nc ·c Nc ·c Nc Nc ·c Nc |
21 | 8, 9 | xpex 5116 | . . . . . . . 8 |
22 | 7, 21 | mucnc 6132 | . . . . . . 7 Nc ·c Nc Nc |
23 | 20, 22 | eqtri 2373 | . . . . . 6 Nc ·c Nc ·c Nc Nc |
24 | 14, 18, 23 | 3eqtr4i 2383 | . . . . 5 Nc ·c Nc ·c Nc Nc ·c Nc ·c Nc |
25 | oveq12 5533 | . . . . . . 7 Nc Nc ·c Nc ·c Nc | |
26 | id 19 | . . . . . . 7 Nc Nc | |
27 | 25, 26 | oveqan12d 5542 | . . . . . 6 Nc Nc Nc ·c ·c Nc ·c Nc ·c Nc |
28 | 27 | 3impa 1146 | . . . . 5 Nc Nc Nc ·c ·c Nc ·c Nc ·c Nc |
29 | id 19 | . . . . . . 7 Nc Nc | |
30 | oveq12 5533 | . . . . . . 7 Nc Nc ·c Nc ·c Nc | |
31 | 29, 30 | oveqan12d 5542 | . . . . . 6 Nc Nc Nc ·c ·c Nc ·c Nc ·c Nc |
32 | 31 | 3impb 1147 | . . . . 5 Nc Nc Nc ·c ·c Nc ·c Nc ·c Nc |
33 | 24, 28, 32 | 3eqtr4a 2411 | . . . 4 Nc Nc Nc ·c ·c ·c ·c |
34 | 33 | exlimiv 1634 | . . 3 Nc Nc Nc ·c ·c ·c ·c |
35 | 34 | exlimivv 1635 | . 2 Nc Nc Nc ·c ·c ·c ·c |
36 | 6, 35 | sylbi 187 | 1 NC NC NC ·c ·c ·c ·c |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 w3a 934 wex 1541 wceq 1642 wcel 1710 class class class wbr 4640 cxp 4771 (class class class)co 5526 cen 6029 NC cncs 6089 Nc cnc 6092 ·c cmuc 6093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-pprod 5739 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-cross 5765 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-nc 6102 df-muc 6103 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |