NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  raleqbi1dv Unicode version

Theorem raleqbi1dv 2816
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
raleqd.1
Assertion
Ref Expression
raleqbi1dv
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem raleqbi1dv
StepHypRef Expression
1 raleq 2808 . 2
2 raleqd.1 . . 3
32ralbidv 2635 . 2
41, 3bitrd 244 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wceq 1642  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620
This theorem is referenced by:  peano5  4410  ncfinraise  4482  nnadjoin  4521  nnpweq  4524  tfinnn  4535  spfininduct  4541  isoeq4  5486  trd  5922  extd  5924  symd  5925  trrd  5926  antird  5929  antid  5930  connexrd  5931  connexd  5932  iserd  5943
  Copyright terms: Public domain W3C validator