New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > raleqbi1dv | GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
raleqd.1 | ⊢ (A = B → (φ ↔ ψ)) |
Ref | Expression |
---|---|
raleqbi1dv | ⊢ (A = B → (∀x ∈ A φ ↔ ∀x ∈ B ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2808 | . 2 ⊢ (A = B → (∀x ∈ A φ ↔ ∀x ∈ B φ)) | |
2 | raleqd.1 | . . 3 ⊢ (A = B → (φ ↔ ψ)) | |
3 | 2 | ralbidv 2635 | . 2 ⊢ (A = B → (∀x ∈ B φ ↔ ∀x ∈ B ψ)) |
4 | 1, 3 | bitrd 244 | 1 ⊢ (A = B → (∀x ∈ A φ ↔ ∀x ∈ B ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 |
This theorem is referenced by: peano5 4410 ncfinraise 4482 nnadjoin 4521 nnpweq 4524 tfinnn 4535 spfininduct 4541 isoeq4 5486 trd 5922 extd 5924 symd 5925 trrd 5926 antird 5929 antid 5930 connexrd 5931 connexd 5932 iserd 5943 |
Copyright terms: Public domain | W3C validator |