Proof of Theorem reu8
Step | Hyp | Ref
| Expression |
1 | | rmo4.1 |
. . 3
⊢ (x = y →
(φ ↔ ψ)) |
2 | 1 | cbvreuv 2838 |
. 2
⊢ (∃!x ∈ A φ ↔ ∃!y ∈ A ψ) |
3 | | reu6 3026 |
. 2
⊢ (∃!y ∈ A ψ ↔ ∃x ∈ A ∀y ∈ A (ψ ↔ y = x)) |
4 | | dfbi2 609 |
. . . . 5
⊢ ((ψ ↔ y = x) ↔
((ψ → y = x) ∧ (y = x → ψ))) |
5 | 4 | ralbii 2639 |
. . . 4
⊢ (∀y ∈ A (ψ ↔ y = x) ↔
∀y
∈ A
((ψ → y = x) ∧ (y = x → ψ))) |
6 | | ancom 437 |
. . . . . 6
⊢ ((φ ∧ ∀y ∈ A (ψ → x = y)) ↔
(∀y
∈ A
(ψ → x = y) ∧ φ)) |
7 | | equcom 1680 |
. . . . . . . . . 10
⊢ (x = y ↔
y = x) |
8 | 7 | imbi2i 303 |
. . . . . . . . 9
⊢ ((ψ → x = y) ↔
(ψ → y = x)) |
9 | 8 | ralbii 2639 |
. . . . . . . 8
⊢ (∀y ∈ A (ψ → x = y) ↔
∀y
∈ A
(ψ → y = x)) |
10 | 9 | a1i 10 |
. . . . . . 7
⊢ (x ∈ A → (∀y ∈ A (ψ → x = y) ↔
∀y
∈ A
(ψ → y = x))) |
11 | | biimt 325 |
. . . . . . . 8
⊢ (x ∈ A → (φ
↔ (x ∈ A →
φ))) |
12 | | df-ral 2620 |
. . . . . . . . 9
⊢ (∀y ∈ A (y = x →
ψ) ↔ ∀y(y ∈ A → (y =
x → ψ))) |
13 | | bi2.04 350 |
. . . . . . . . . 10
⊢ ((y ∈ A → (y =
x → ψ)) ↔ (y = x →
(y ∈
A → ψ))) |
14 | 13 | albii 1566 |
. . . . . . . . 9
⊢ (∀y(y ∈ A → (y =
x → ψ)) ↔ ∀y(y = x →
(y ∈
A → ψ))) |
15 | | vex 2863 |
. . . . . . . . . 10
⊢ x ∈
V |
16 | | eleq1 2413 |
. . . . . . . . . . . . 13
⊢ (x = y →
(x ∈
A ↔ y ∈ A)) |
17 | 16, 1 | imbi12d 311 |
. . . . . . . . . . . 12
⊢ (x = y →
((x ∈
A → φ) ↔ (y ∈ A → ψ))) |
18 | 17 | bicomd 192 |
. . . . . . . . . . 11
⊢ (x = y →
((y ∈
A → ψ) ↔ (x ∈ A → φ))) |
19 | 18 | equcoms 1681 |
. . . . . . . . . 10
⊢ (y = x →
((y ∈
A → ψ) ↔ (x ∈ A → φ))) |
20 | 15, 19 | ceqsalv 2886 |
. . . . . . . . 9
⊢ (∀y(y = x →
(y ∈
A → ψ)) ↔ (x ∈ A → φ)) |
21 | 12, 14, 20 | 3bitrri 263 |
. . . . . . . 8
⊢ ((x ∈ A → φ)
↔ ∀y ∈ A (y = x → ψ)) |
22 | 11, 21 | syl6bb 252 |
. . . . . . 7
⊢ (x ∈ A → (φ
↔ ∀y ∈ A (y = x → ψ))) |
23 | 10, 22 | anbi12d 691 |
. . . . . 6
⊢ (x ∈ A → ((∀y ∈ A (ψ → x = y) ∧ φ) ↔
(∀y
∈ A
(ψ → y = x) ∧ ∀y ∈ A (y = x → ψ)))) |
24 | 6, 23 | syl5bb 248 |
. . . . 5
⊢ (x ∈ A → ((φ
∧ ∀y ∈ A (ψ → x = y)) ↔
(∀y
∈ A
(ψ → y = x) ∧ ∀y ∈ A (y = x → ψ)))) |
25 | | r19.26 2747 |
. . . . 5
⊢ (∀y ∈ A ((ψ → y = x) ∧ (y = x → ψ))
↔ (∀y ∈ A (ψ →
y = x)
∧ ∀y ∈ A (y = x →
ψ))) |
26 | 24, 25 | syl6rbbr 255 |
. . . 4
⊢ (x ∈ A → (∀y ∈ A ((ψ → y = x) ∧ (y = x → ψ))
↔ (φ ∧ ∀y ∈ A (ψ →
x = y)))) |
27 | 5, 26 | syl5bb 248 |
. . 3
⊢ (x ∈ A → (∀y ∈ A (ψ ↔ y = x) ↔
(φ ∧
∀y
∈ A
(ψ → x = y)))) |
28 | 27 | rexbiia 2648 |
. 2
⊢ (∃x ∈ A ∀y ∈ A (ψ ↔ y = x) ↔
∃x ∈ A (φ ∧ ∀y ∈ A (ψ → x = y))) |
29 | 2, 3, 28 | 3bitri 262 |
1
⊢ (∃!x ∈ A φ ↔ ∃x ∈ A (φ ∧ ∀y ∈ A (ψ → x = y))) |