New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sneqb | Unicode version |
Description: Biconditional equality for singletons. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
sneqb.1 |
Ref | Expression |
---|---|
sneqb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqb.1 | . 2 | |
2 | sneqbg 3875 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wceq 1642 wcel 1710 cvv 2859 csn 3737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-sn 3741 |
This theorem is referenced by: snelpw1 4146 otkelins2kg 4253 otkelins3kg 4254 opksnelsik 4265 nnsucelrlem1 4424 eqtfinrelk 4486 oddfinex 4504 nnadjoinlem1 4519 dfop2lem1 4573 setconslem1 4731 setconslem2 4732 funsi 5520 brsnsi 5773 brsnsi1 5775 brsnsi2 5776 funsex 5828 pw1fnex 5852 pw1fnf1o 5855 antisymex 5912 foundex 5914 extex 5915 enpw1 6062 ce2 6192 scancan 6331 |
Copyright terms: Public domain | W3C validator |