NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sneqb GIF version

Theorem sneqb 3877
Description: Biconditional equality for singletons. (Contributed by SF, 14-Jan-2015.)
Hypothesis
Ref Expression
sneqb.1 A V
Assertion
Ref Expression
sneqb ({A} = {B} ↔ A = B)

Proof of Theorem sneqb
StepHypRef Expression
1 sneqb.1 . 2 A V
2 sneqbg 3876 . 2 (A V → ({A} = {B} ↔ A = B))
31, 2ax-mp 5 1 ({A} = {B} ↔ A = B)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wcel 1710  Vcvv 2860  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sn 3742
This theorem is referenced by:  snelpw1  4147  otkelins2kg  4254  otkelins3kg  4255  opksnelsik  4266  nnsucelrlem1  4425  eqtfinrelk  4487  oddfinex  4505  nnadjoinlem1  4520  dfop2lem1  4574  setconslem1  4732  setconslem2  4733  funsi  5521  brsnsi  5774  brsnsi1  5776  brsnsi2  5777  funsex  5829  pw1fnex  5853  pw1fnf1o  5856  antisymex  5913  foundex  5915  extex  5916  enpw1  6063  ce2  6193  scancan  6332
  Copyright terms: Public domain W3C validator