New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sneqb | GIF version |
Description: Biconditional equality for singletons. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
sneqb.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
sneqb | ⊢ ({A} = {B} ↔ A = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqb.1 | . 2 ⊢ A ∈ V | |
2 | sneqbg 3876 | . 2 ⊢ (A ∈ V → ({A} = {B} ↔ A = B)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ({A} = {B} ↔ A = B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 Vcvv 2860 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sn 3742 |
This theorem is referenced by: snelpw1 4147 otkelins2kg 4254 otkelins3kg 4255 opksnelsik 4266 nnsucelrlem1 4425 eqtfinrelk 4487 oddfinex 4505 nnadjoinlem1 4520 dfop2lem1 4574 setconslem1 4732 setconslem2 4733 funsi 5521 brsnsi 5774 brsnsi1 5776 brsnsi2 5777 funsex 5829 pw1fnex 5853 pw1fnf1o 5856 antisymex 5913 foundex 5915 extex 5916 enpw1 6063 ce2 6193 scancan 6332 |
Copyright terms: Public domain | W3C validator |