New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  tz6.12-2 GIF version

Theorem tz6.12-2 5346
 Description: Function value when F is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by set.mm contributors, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12-2 ∃!y AFy → (FA) = )
Distinct variable groups:   y,A   y,F

Proof of Theorem tz6.12-2
Dummy variables x z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fv3 5341 . 2 (FA) = {x (y(x y AFy) ∃!y AFy)}
2 vex 2862 . . . . . 6 z V
3 elequ1 1713 . . . . . . . . 9 (x = z → (x yz y))
43anbi1d 685 . . . . . . . 8 (x = z → ((x y AFy) ↔ (z y AFy)))
54exbidv 1626 . . . . . . 7 (x = z → (y(x y AFy) ↔ y(z y AFy)))
65anbi1d 685 . . . . . 6 (x = z → ((y(x y AFy) ∃!y AFy) ↔ (y(z y AFy) ∃!y AFy)))
72, 6elab 2985 . . . . 5 (z {x (y(x y AFy) ∃!y AFy)} ↔ (y(z y AFy) ∃!y AFy))
87simprbi 450 . . . 4 (z {x (y(x y AFy) ∃!y AFy)} → ∃!y AFy)
98con3i 127 . . 3 ∃!y AFy → ¬ z {x (y(x y AFy) ∃!y AFy)})
109eq0rdv 3585 . 2 ∃!y AFy → {x (y(x y AFy) ∃!y AFy)} = )
111, 10syl5eq 2397 1 ∃!y AFy → (FA) = )
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 358  ∃wex 1541   = wceq 1642   ∈ wcel 1710  ∃!weu 2204  {cab 2339  ∅c0 3550   class class class wbr 4639   ‘cfv 4781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-addc 4378  df-nnc 4379  df-phi 4565  df-op 4566  df-br 4640  df-fv 4795 This theorem is referenced by:  tz6.12i  5348  ndmfv  5349  nfunsn  5353  fvfullfun  5864
 Copyright terms: Public domain W3C validator