NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unipw1 Unicode version

Theorem unipw1 4326
Description: The union of a unit power class is the original set. (Contributed by SF, 20-Jan-2015.)
Assertion
Ref Expression
unipw1 1

Proof of Theorem unipw1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3895 . . 3 1 1
2 elpw1 4145 . . . . . 6 1
32anbi1i 676 . . . . 5 1
4 ancom 437 . . . . 5 1 1
5 r19.41v 2765 . . . . 5
63, 4, 53bitr4i 268 . . . 4 1
76exbii 1582 . . 3 1
8 risset 2662 . . . 4
9 snex 4112 . . . . . . 7
10 eleq2 2414 . . . . . . 7
119, 10ceqsexv 2895 . . . . . 6
12 df-sn 3742 . . . . . . 7
1312abeq2i 2461 . . . . . 6
14 equcom 1680 . . . . . 6
1511, 13, 143bitri 262 . . . . 5
1615rexbii 2640 . . . 4
17 rexcom4 2879 . . . 4
188, 16, 173bitr2ri 265 . . 3
191, 7, 183bitri 262 . 2 1
2019eqriv 2350 1 1
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   wceq 1642   wcel 1710  wrex 2616  csn 3738  cuni 3892  1 cpw1 4136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-uni 3893  df-1c 4137  df-pw1 4138
This theorem is referenced by:  pw1exb  4327  pw1equn  4332  pw1eqadj  4333  sspw1  4336
  Copyright terms: Public domain W3C validator