New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unipw1 | Unicode version |
Description: The union of a unit power class is the original set. (Contributed by SF, 20-Jan-2015.) |
Ref | Expression |
---|---|
unipw1 | 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 3895 | . . 3 1 1 | |
2 | elpw1 4145 | . . . . . 6 1 | |
3 | 2 | anbi1i 676 | . . . . 5 1 |
4 | ancom 437 | . . . . 5 1 1 | |
5 | r19.41v 2765 | . . . . 5 | |
6 | 3, 4, 5 | 3bitr4i 268 | . . . 4 1 |
7 | 6 | exbii 1582 | . . 3 1 |
8 | risset 2662 | . . . 4 | |
9 | snex 4112 | . . . . . . 7 | |
10 | eleq2 2414 | . . . . . . 7 | |
11 | 9, 10 | ceqsexv 2895 | . . . . . 6 |
12 | df-sn 3742 | . . . . . . 7 | |
13 | 12 | abeq2i 2461 | . . . . . 6 |
14 | equcom 1680 | . . . . . 6 | |
15 | 11, 13, 14 | 3bitri 262 | . . . . 5 |
16 | 15 | rexbii 2640 | . . . 4 |
17 | rexcom4 2879 | . . . 4 | |
18 | 8, 16, 17 | 3bitr2ri 265 | . . 3 |
19 | 1, 7, 18 | 3bitri 262 | . 2 1 |
20 | 19 | eqriv 2350 | 1 1 |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wex 1541 wceq 1642 wcel 1710 wrex 2616 csn 3738 cuni 3892 1 cpw1 4136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-uni 3893 df-1c 4137 df-pw1 4138 |
This theorem is referenced by: pw1exb 4327 pw1equn 4332 pw1eqadj 4333 sspw1 4336 |
Copyright terms: Public domain | W3C validator |