Proof of Theorem eu2
Step | Hyp | Ref
| Expression |
1 | | euex 2227 |
. . 3
⊢ (∃!xφ → ∃xφ) |
2 | | eu2.1 |
. . . . 5
⊢ Ⅎyφ |
3 | 2 | eumo0 2228 |
. . . 4
⊢ (∃!xφ → ∃y∀x(φ → x = y)) |
4 | 2 | mo 2226 |
. . . 4
⊢ (∃y∀x(φ → x = y) ↔
∀x∀y((φ ∧
[y / x]φ) →
x = y)) |
5 | 3, 4 | sylib 188 |
. . 3
⊢ (∃!xφ → ∀x∀y((φ ∧
[y / x]φ) →
x = y)) |
6 | 1, 5 | jca 518 |
. 2
⊢ (∃!xφ → (∃xφ ∧ ∀x∀y((φ ∧
[y / x]φ) →
x = y))) |
7 | | 19.29r 1597 |
. . . 4
⊢ ((∃xφ ∧ ∀x∀y((φ ∧
[y / x]φ) →
x = y))
→ ∃x(φ ∧ ∀y((φ ∧ [y / x]φ) →
x = y))) |
8 | | impexp 433 |
. . . . . . . . 9
⊢ (((φ ∧
[y / x]φ) →
x = y)
↔ (φ → ([y / x]φ → x = y))) |
9 | 8 | albii 1566 |
. . . . . . . 8
⊢ (∀y((φ ∧
[y / x]φ) →
x = y)
↔ ∀y(φ →
([y / x]φ →
x = y))) |
10 | 2 | 19.21 1796 |
. . . . . . . 8
⊢ (∀y(φ → ([y / x]φ → x = y)) ↔
(φ → ∀y([y / x]φ → x = y))) |
11 | 9, 10 | bitri 240 |
. . . . . . 7
⊢ (∀y((φ ∧
[y / x]φ) →
x = y)
↔ (φ → ∀y([y / x]φ → x = y))) |
12 | 11 | anbi2i 675 |
. . . . . 6
⊢ ((φ ∧ ∀y((φ ∧
[y / x]φ) →
x = y))
↔ (φ ∧ (φ →
∀y([y / x]φ →
x = y)))) |
13 | | abai 770 |
. . . . . 6
⊢ ((φ ∧ ∀y([y / x]φ → x = y)) ↔
(φ ∧
(φ → ∀y([y / x]φ → x = y)))) |
14 | 12, 13 | bitr4i 243 |
. . . . 5
⊢ ((φ ∧ ∀y((φ ∧
[y / x]φ) →
x = y))
↔ (φ ∧ ∀y([y / x]φ →
x = y))) |
15 | 14 | exbii 1582 |
. . . 4
⊢ (∃x(φ ∧ ∀y((φ ∧
[y / x]φ) →
x = y))
↔ ∃x(φ ∧ ∀y([y / x]φ →
x = y))) |
16 | 7, 15 | sylib 188 |
. . 3
⊢ ((∃xφ ∧ ∀x∀y((φ ∧
[y / x]φ) →
x = y))
→ ∃x(φ ∧ ∀y([y / x]φ →
x = y))) |
17 | 2 | eu1 2225 |
. . 3
⊢ (∃!xφ ↔ ∃x(φ ∧ ∀y([y / x]φ → x = y))) |
18 | 16, 17 | sylibr 203 |
. 2
⊢ ((∃xφ ∧ ∀x∀y((φ ∧
[y / x]φ) →
x = y))
→ ∃!xφ) |
19 | 6, 18 | impbii 180 |
1
⊢ (∃!xφ ↔ (∃xφ ∧ ∀x∀y((φ ∧
[y / x]φ) →
x = y))) |