New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r2alf | GIF version |
Description: Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
r2alf.1 | ⊢ ℲyA |
Ref | Expression |
---|---|
r2alf | ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀x∀y((x ∈ A ∧ y ∈ B) → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2620 | . 2 ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀x(x ∈ A → ∀y ∈ B φ)) | |
2 | r2alf.1 | . . . . . 6 ⊢ ℲyA | |
3 | 2 | nfcri 2484 | . . . . 5 ⊢ Ⅎy x ∈ A |
4 | 3 | 19.21 1796 | . . . 4 ⊢ (∀y(x ∈ A → (y ∈ B → φ)) ↔ (x ∈ A → ∀y(y ∈ B → φ))) |
5 | impexp 433 | . . . . 5 ⊢ (((x ∈ A ∧ y ∈ B) → φ) ↔ (x ∈ A → (y ∈ B → φ))) | |
6 | 5 | albii 1566 | . . . 4 ⊢ (∀y((x ∈ A ∧ y ∈ B) → φ) ↔ ∀y(x ∈ A → (y ∈ B → φ))) |
7 | df-ral 2620 | . . . . 5 ⊢ (∀y ∈ B φ ↔ ∀y(y ∈ B → φ)) | |
8 | 7 | imbi2i 303 | . . . 4 ⊢ ((x ∈ A → ∀y ∈ B φ) ↔ (x ∈ A → ∀y(y ∈ B → φ))) |
9 | 4, 6, 8 | 3bitr4i 268 | . . 3 ⊢ (∀y((x ∈ A ∧ y ∈ B) → φ) ↔ (x ∈ A → ∀y ∈ B φ)) |
10 | 9 | albii 1566 | . 2 ⊢ (∀x∀y((x ∈ A ∧ y ∈ B) → φ) ↔ ∀x(x ∈ A → ∀y ∈ B φ)) |
11 | 1, 10 | bitr4i 243 | 1 ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀x∀y((x ∈ A ∧ y ∈ B) → φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 Ⅎwnfc 2477 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 |
This theorem is referenced by: r2al 2652 ralcomf 2770 |
Copyright terms: Public domain | W3C validator |