New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.23v | GIF version |
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
19.23v | ⊢ (∀x(φ → ψ) ↔ (∃xφ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
2 | 1 | 19.23 1801 | 1 ⊢ (∀x(φ → ψ) ↔ (∃xφ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.23vv 1892 2eu4 2287 euind 3024 reuind 3040 r19.3rzv 3644 unissb 3922 eqpw1 4163 pw111 4171 insklem 4305 cotr 5027 dffun2 5120 fununi 5161 dff13 5472 clos1induct 5881 |
Copyright terms: Public domain | W3C validator |