| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 19.23v | GIF version | ||
| Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.) | 
| Ref | Expression | 
|---|---|
| 19.23v | ⊢ (∀x(φ → ψ) ↔ (∃xφ → ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
| 2 | 1 | 19.23 1801 | 1 ⊢ (∀x(φ → ψ) ↔ (∃xφ → ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 | 
| This theorem is referenced by: 19.23vv 1892 2eu4 2287 euind 3024 reuind 3040 r19.3rzv 3644 unissb 3922 eqpw1 4163 pw111 4171 insklem 4305 cotr 5027 dffun2 5120 fununi 5161 dff13 5472 clos1induct 5881 | 
| Copyright terms: Public domain | W3C validator |