NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.23v GIF version

Theorem 19.23v 1891
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v (x(φψ) ↔ (xφψ))
Distinct variable group:   ψ,x
Allowed substitution hint:   φ(x)

Proof of Theorem 19.23v
StepHypRef Expression
1 nfv 1619 . 2 xψ
2119.23 1801 1 (x(φψ) ↔ (xφψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  19.23vv  1892  2eu4  2287  euind  3023  reuind  3039  r19.3rzv  3643  unissb  3921  eqpw1  4162  pw111  4170  insklem  4304  cotr  5026  dffun2  5119  fununi  5160  dff13  5471  clos1induct  5880
  Copyright terms: Public domain W3C validator