New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.3rz | GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.) |
Ref | Expression |
---|---|
r19.3rz.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
r19.3rz | ⊢ (A ≠ ∅ → (φ ↔ ∀x ∈ A φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 3559 | . . 3 ⊢ (A ≠ ∅ ↔ ∃x x ∈ A) | |
2 | biimt 325 | . . 3 ⊢ (∃x x ∈ A → (φ ↔ (∃x x ∈ A → φ))) | |
3 | 1, 2 | sylbi 187 | . 2 ⊢ (A ≠ ∅ → (φ ↔ (∃x x ∈ A → φ))) |
4 | df-ral 2619 | . . 3 ⊢ (∀x ∈ A φ ↔ ∀x(x ∈ A → φ)) | |
5 | r19.3rz.1 | . . . 4 ⊢ Ⅎxφ | |
6 | 5 | 19.23 1801 | . . 3 ⊢ (∀x(x ∈ A → φ) ↔ (∃x x ∈ A → φ)) |
7 | 4, 6 | bitri 240 | . 2 ⊢ (∀x ∈ A φ ↔ (∃x x ∈ A → φ)) |
8 | 3, 7 | syl6bbr 254 | 1 ⊢ (A ≠ ∅ → (φ ↔ ∀x ∈ A φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 ∈ wcel 1710 ≠ wne 2516 ∀wral 2614 ∅c0 3550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-nul 3551 |
This theorem is referenced by: r19.28z 3642 r19.27z 3648 |
Copyright terms: Public domain | W3C validator |