New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2gencl | GIF version |
Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
Ref | Expression |
---|---|
2gencl.1 | ⊢ (C ∈ S ↔ ∃x ∈ R A = C) |
2gencl.2 | ⊢ (D ∈ S ↔ ∃y ∈ R B = D) |
2gencl.3 | ⊢ (A = C → (φ ↔ ψ)) |
2gencl.4 | ⊢ (B = D → (ψ ↔ χ)) |
2gencl.5 | ⊢ ((x ∈ R ∧ y ∈ R) → φ) |
Ref | Expression |
---|---|
2gencl | ⊢ ((C ∈ S ∧ D ∈ S) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2gencl.2 | . . . 4 ⊢ (D ∈ S ↔ ∃y ∈ R B = D) | |
2 | df-rex 2621 | . . . 4 ⊢ (∃y ∈ R B = D ↔ ∃y(y ∈ R ∧ B = D)) | |
3 | 1, 2 | bitri 240 | . . 3 ⊢ (D ∈ S ↔ ∃y(y ∈ R ∧ B = D)) |
4 | 2gencl.4 | . . . 4 ⊢ (B = D → (ψ ↔ χ)) | |
5 | 4 | imbi2d 307 | . . 3 ⊢ (B = D → ((C ∈ S → ψ) ↔ (C ∈ S → χ))) |
6 | 2gencl.1 | . . . . . 6 ⊢ (C ∈ S ↔ ∃x ∈ R A = C) | |
7 | df-rex 2621 | . . . . . 6 ⊢ (∃x ∈ R A = C ↔ ∃x(x ∈ R ∧ A = C)) | |
8 | 6, 7 | bitri 240 | . . . . 5 ⊢ (C ∈ S ↔ ∃x(x ∈ R ∧ A = C)) |
9 | 2gencl.3 | . . . . . 6 ⊢ (A = C → (φ ↔ ψ)) | |
10 | 9 | imbi2d 307 | . . . . 5 ⊢ (A = C → ((y ∈ R → φ) ↔ (y ∈ R → ψ))) |
11 | 2gencl.5 | . . . . . 6 ⊢ ((x ∈ R ∧ y ∈ R) → φ) | |
12 | 11 | ex 423 | . . . . 5 ⊢ (x ∈ R → (y ∈ R → φ)) |
13 | 8, 10, 12 | gencl 2888 | . . . 4 ⊢ (C ∈ S → (y ∈ R → ψ)) |
14 | 13 | com12 27 | . . 3 ⊢ (y ∈ R → (C ∈ S → ψ)) |
15 | 3, 5, 14 | gencl 2888 | . 2 ⊢ (D ∈ S → (C ∈ S → χ)) |
16 | 15 | impcom 419 | 1 ⊢ ((C ∈ S ∧ D ∈ S) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-rex 2621 |
This theorem is referenced by: 3gencl 2890 |
Copyright terms: Public domain | W3C validator |