New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > impcom | GIF version |
Description: Importation inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
Ref | Expression |
---|---|
imp.1 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
impcom | ⊢ ((ψ ∧ φ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
2 | 1 | com12 27 | . 2 ⊢ (ψ → (φ → χ)) |
3 | 2 | imp 418 | 1 ⊢ ((ψ ∧ φ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mpan9 455 equtr2 1688 19.41 1879 dvelimf 1997 ax11eq 2193 ax11el 2194 mopick 2266 2euex 2276 gencl 2888 2gencl 2889 rspccva 2955 sbcimdv 3108 sseq0 3583 minel 3607 r19.2z 3640 elelpwi 3733 ssuni 3914 unipw 4118 pwadjoin 4120 opkthg 4132 sspw1 4336 findsd 4411 nnsucelr 4429 nndisjeq 4430 tfin11 4494 spfinsfincl 4540 phi11lem1 4596 phialllem1 4617 2optocl 4840 3optocl 4841 fneu 5188 fnun 5190 fss 5231 fun 5237 dmfex 5248 fvelimab 5371 eqfnfv 5393 fnressn 5439 fressnfv 5440 funfvima3 5462 f1fveq 5474 isotr 5496 ndmovcl 5615 fvmptss 5706 fnfullfunlem2 5858 clos1conn 5880 clos1basesuc 5883 2ecoptocl 5998 ce0addcnnul 6180 sbthlem2 6205 nchoicelem12 6301 frecxp 6315 |
Copyright terms: Public domain | W3C validator |