| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > gencl | GIF version | ||
| Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| Ref | Expression |
|---|---|
| gencl.1 | ⊢ (θ ↔ ∃x(χ ∧ A = B)) |
| gencl.2 | ⊢ (A = B → (φ ↔ ψ)) |
| gencl.3 | ⊢ (χ → φ) |
| Ref | Expression |
|---|---|
| gencl | ⊢ (θ → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gencl.1 | . 2 ⊢ (θ ↔ ∃x(χ ∧ A = B)) | |
| 2 | gencl.3 | . . . . 5 ⊢ (χ → φ) | |
| 3 | gencl.2 | . . . . 5 ⊢ (A = B → (φ ↔ ψ)) | |
| 4 | 2, 3 | syl5ib 210 | . . . 4 ⊢ (A = B → (χ → ψ)) |
| 5 | 4 | impcom 419 | . . 3 ⊢ ((χ ∧ A = B) → ψ) |
| 6 | 5 | exlimiv 1634 | . 2 ⊢ (∃x(χ ∧ A = B) → ψ) |
| 7 | 1, 6 | sylbi 187 | 1 ⊢ (θ → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
| This theorem is referenced by: 2gencl 2889 3gencl 2890 |
| Copyright terms: Public domain | W3C validator |