New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2iunin | GIF version |
Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008.) |
Ref | Expression |
---|---|
2iunin | ⊢ ∪x ∈ A ∪y ∈ B (C ∩ D) = (∪x ∈ A C ∩ ∪y ∈ B D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin2 4031 | . . . 4 ⊢ ∪y ∈ B (C ∩ D) = (C ∩ ∪y ∈ B D) | |
2 | 1 | a1i 10 | . . 3 ⊢ (x ∈ A → ∪y ∈ B (C ∩ D) = (C ∩ ∪y ∈ B D)) |
3 | 2 | iuneq2i 3988 | . 2 ⊢ ∪x ∈ A ∪y ∈ B (C ∩ D) = ∪x ∈ A (C ∩ ∪y ∈ B D) |
4 | iunin1 4032 | . 2 ⊢ ∪x ∈ A (C ∩ ∪y ∈ B D) = (∪x ∈ A C ∩ ∪y ∈ B D) | |
5 | 3, 4 | eqtri 2373 | 1 ⊢ ∪x ∈ A ∪y ∈ B (C ∩ D) = (∪x ∈ A C ∩ ∪y ∈ B D) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 ∩ cin 3209 ∪ciun 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-iun 3972 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |