| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 2ralbida | GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 24-Feb-2004.) |
| Ref | Expression |
|---|---|
| 2ralbida.1 | ⊢ Ⅎxφ |
| 2ralbida.2 | ⊢ Ⅎyφ |
| 2ralbida.3 | ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| 2ralbida | ⊢ (φ → (∀x ∈ A ∀y ∈ B ψ ↔ ∀x ∈ A ∀y ∈ B χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbida.1 | . 2 ⊢ Ⅎxφ | |
| 2 | 2ralbida.2 | . . . 4 ⊢ Ⅎyφ | |
| 3 | nfv 1619 | . . . 4 ⊢ Ⅎy x ∈ A | |
| 4 | 2, 3 | nfan 1824 | . . 3 ⊢ Ⅎy(φ ∧ x ∈ A) |
| 5 | 2ralbida.3 | . . . 4 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → (ψ ↔ χ)) | |
| 6 | 5 | anassrs 629 | . . 3 ⊢ (((φ ∧ x ∈ A) ∧ y ∈ B) → (ψ ↔ χ)) |
| 7 | 4, 6 | ralbida 2629 | . 2 ⊢ ((φ ∧ x ∈ A) → (∀y ∈ B ψ ↔ ∀y ∈ B χ)) |
| 8 | 1, 7 | ralbida 2629 | 1 ⊢ (φ → (∀x ∈ A ∀y ∈ B ψ ↔ ∀x ∈ A ∀y ∈ B χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 Ⅎwnf 1544 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2620 |
| This theorem is referenced by: 2ralbidva 2655 |
| Copyright terms: Public domain | W3C validator |