Proof of Theorem 2sb6rf
Step | Hyp | Ref
| Expression |
1 | | 2sb5rf.1 |
. . 3
⊢ Ⅎzφ |
2 | 1 | sb6rf 2091 |
. 2
⊢ (φ ↔ ∀z(z = x →
[z / x]φ)) |
3 | | 19.21v 1890 |
. . . 4
⊢ (∀w(z = x →
(w = y
→ [w / y][z / x]φ)) ↔
(z = x
→ ∀w(w = y → [w /
y][z /
x]φ))) |
4 | | sbcom2 2114 |
. . . . . . 7
⊢ ([z / x][w / y]φ ↔ [w / y][z / x]φ) |
5 | 4 | imbi2i 303 |
. . . . . 6
⊢ (((z = x ∧ w = y) → [z /
x][w /
y]φ) ↔ ((z = x ∧ w = y) → [w /
y][z /
x]φ)) |
6 | | impexp 433 |
. . . . . 6
⊢ (((z = x ∧ w = y) → [w /
y][z /
x]φ) ↔ (z = x →
(w = y
→ [w / y][z / x]φ))) |
7 | 5, 6 | bitri 240 |
. . . . 5
⊢ (((z = x ∧ w = y) → [z /
x][w /
y]φ) ↔ (z = x →
(w = y
→ [w / y][z / x]φ))) |
8 | 7 | albii 1566 |
. . . 4
⊢ (∀w((z = x ∧ w = y) → [z /
x][w /
y]φ) ↔ ∀w(z = x →
(w = y
→ [w / y][z / x]φ))) |
9 | | 2sb5rf.2 |
. . . . . . 7
⊢ Ⅎwφ |
10 | 9 | nfsb 2109 |
. . . . . 6
⊢ Ⅎw[z / x]φ |
11 | 10 | sb6rf 2091 |
. . . . 5
⊢ ([z / x]φ ↔ ∀w(w = y →
[w / y][z / x]φ)) |
12 | 11 | imbi2i 303 |
. . . 4
⊢ ((z = x →
[z / x]φ) ↔
(z = x
→ ∀w(w = y → [w /
y][z /
x]φ))) |
13 | 3, 8, 12 | 3bitr4ri 269 |
. . 3
⊢ ((z = x →
[z / x]φ) ↔
∀w((z = x ∧ w = y) →
[z / x][w / y]φ)) |
14 | 13 | albii 1566 |
. 2
⊢ (∀z(z = x →
[z / x]φ) ↔
∀z∀w((z = x ∧ w = y) → [z /
x][w /
y]φ)) |
15 | 2, 14 | bitri 240 |
1
⊢ (φ ↔ ∀z∀w((z = x ∧ w = y) → [z /
x][w /
y]φ)) |