![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > elce | GIF version |
Description: Membership in cardinal exponentiation. Theorem XI.2.38 of [Rosser] p. 382. (Contributed by SF, 6-Mar-2015.) |
Ref | Expression |
---|---|
elce | ⊢ ((N ∈ NC ∧ M ∈ NC ) → (A ∈ (N ↑c M) ↔ ∃x∃y(℘1x ∈ N ∧ ℘1y ∈ M ∧ A ≈ (x ↑m y)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2867 | . . 3 ⊢ (A ∈ (N ↑c M) → A ∈ V) | |
2 | 1 | a1i 10 | . 2 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (A ∈ (N ↑c M) → A ∈ V)) |
3 | brex 4689 | . . . . . 6 ⊢ (A ≈ (x ↑m y) → (A ∈ V ∧ (x ↑m y) ∈ V)) | |
4 | 3 | simpld 445 | . . . . 5 ⊢ (A ≈ (x ↑m y) → A ∈ V) |
5 | 4 | 3ad2ant3 978 | . . . 4 ⊢ ((℘1x ∈ N ∧ ℘1y ∈ M ∧ A ≈ (x ↑m y)) → A ∈ V) |
6 | 5 | exlimivv 1635 | . . 3 ⊢ (∃x∃y(℘1x ∈ N ∧ ℘1y ∈ M ∧ A ≈ (x ↑m y)) → A ∈ V) |
7 | 6 | a1i 10 | . 2 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (∃x∃y(℘1x ∈ N ∧ ℘1y ∈ M ∧ A ≈ (x ↑m y)) → A ∈ V)) |
8 | ovce 6172 | . . . . 5 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (N ↑c M) = {g ∣ ∃x∃y(℘1x ∈ N ∧ ℘1y ∈ M ∧ g ≈ (x ↑m y))}) | |
9 | 8 | eleq2d 2420 | . . . 4 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (A ∈ (N ↑c M) ↔ A ∈ {g ∣ ∃x∃y(℘1x ∈ N ∧ ℘1y ∈ M ∧ g ≈ (x ↑m y))})) |
10 | breq1 4642 | . . . . . . 7 ⊢ (g = A → (g ≈ (x ↑m y) ↔ A ≈ (x ↑m y))) | |
11 | 10 | 3anbi3d 1258 | . . . . . 6 ⊢ (g = A → ((℘1x ∈ N ∧ ℘1y ∈ M ∧ g ≈ (x ↑m y)) ↔ (℘1x ∈ N ∧ ℘1y ∈ M ∧ A ≈ (x ↑m y)))) |
12 | 11 | 2exbidv 1628 | . . . . 5 ⊢ (g = A → (∃x∃y(℘1x ∈ N ∧ ℘1y ∈ M ∧ g ≈ (x ↑m y)) ↔ ∃x∃y(℘1x ∈ N ∧ ℘1y ∈ M ∧ A ≈ (x ↑m y)))) |
13 | 12 | elabg 2986 | . . . 4 ⊢ (A ∈ V → (A ∈ {g ∣ ∃x∃y(℘1x ∈ N ∧ ℘1y ∈ M ∧ g ≈ (x ↑m y))} ↔ ∃x∃y(℘1x ∈ N ∧ ℘1y ∈ M ∧ A ≈ (x ↑m y)))) |
14 | 9, 13 | sylan9bb 680 | . . 3 ⊢ (((N ∈ NC ∧ M ∈ NC ) ∧ A ∈ V) → (A ∈ (N ↑c M) ↔ ∃x∃y(℘1x ∈ N ∧ ℘1y ∈ M ∧ A ≈ (x ↑m y)))) |
15 | 14 | ex 423 | . 2 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (A ∈ V → (A ∈ (N ↑c M) ↔ ∃x∃y(℘1x ∈ N ∧ ℘1y ∈ M ∧ A ≈ (x ↑m y))))) |
16 | 2, 7, 15 | pm5.21ndd 343 | 1 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (A ∈ (N ↑c M) ↔ ∃x∃y(℘1x ∈ N ∧ ℘1y ∈ M ∧ A ≈ (x ↑m y)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2859 ℘1cpw1 4135 class class class wbr 4639 (class class class)co 5525 ↑m cmap 5999 ≈ cen 6028 NC cncs 6088 ↑c cce 6096 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-fv 4795 df-2nd 4797 df-ov 5526 df-oprab 5528 df-mpt 5652 df-mpt2 5654 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-pw1fn 5766 df-map 6001 df-en 6029 df-ce 6106 |
This theorem is referenced by: ce0nnul 6177 cenc 6181 ce0nnulb 6182 fce 6188 |
Copyright terms: Public domain | W3C validator |