Proof of Theorem ceqsex3v
Step | Hyp | Ref
| Expression |
1 | | anass 630 |
. . . . . 6
⊢ (((x = A ∧ (y = B ∧ z = C)) ∧ φ) ↔
(x = A
∧ ((y =
B ∧
z = C)
∧ φ))) |
2 | | 3anass 938 |
. . . . . . 7
⊢ ((x = A ∧ y = B ∧ z = C) ↔
(x = A
∧ (y =
B ∧
z = C))) |
3 | 2 | anbi1i 676 |
. . . . . 6
⊢ (((x = A ∧ y = B ∧ z = C) ∧ φ) ↔
((x = A
∧ (y =
B ∧
z = C))
∧ φ)) |
4 | | df-3an 936 |
. . . . . . 7
⊢ ((y = B ∧ z = C ∧ φ) ↔ ((y = B ∧ z = C) ∧ φ)) |
5 | 4 | anbi2i 675 |
. . . . . 6
⊢ ((x = A ∧ (y = B ∧ z = C ∧ φ)) ↔
(x = A
∧ ((y =
B ∧
z = C)
∧ φ))) |
6 | 1, 3, 5 | 3bitr4i 268 |
. . . . 5
⊢ (((x = A ∧ y = B ∧ z = C) ∧ φ) ↔
(x = A
∧ (y =
B ∧
z = C
∧ φ))) |
7 | 6 | 2exbii 1583 |
. . . 4
⊢ (∃y∃z((x = A ∧ y = B ∧ z = C) ∧ φ) ↔
∃y∃z(x = A ∧ (y = B ∧ z = C ∧ φ))) |
8 | | 19.42vv 1907 |
. . . 4
⊢ (∃y∃z(x = A ∧ (y = B ∧ z = C ∧ φ)) ↔
(x = A
∧ ∃y∃z(y = B ∧ z = C ∧ φ))) |
9 | 7, 8 | bitri 240 |
. . 3
⊢ (∃y∃z((x = A ∧ y = B ∧ z = C) ∧ φ) ↔
(x = A
∧ ∃y∃z(y = B ∧ z = C ∧ φ))) |
10 | 9 | exbii 1582 |
. 2
⊢ (∃x∃y∃z((x = A ∧ y = B ∧ z = C) ∧ φ) ↔
∃x(x = A ∧ ∃y∃z(y = B ∧ z = C ∧ φ))) |
11 | | ceqsex3v.1 |
. . . 4
⊢ A ∈
V |
12 | | ceqsex3v.4 |
. . . . . 6
⊢ (x = A →
(φ ↔ ψ)) |
13 | 12 | 3anbi3d 1258 |
. . . . 5
⊢ (x = A →
((y = B
∧ z =
C ∧ φ) ↔ (y = B ∧ z = C ∧ ψ))) |
14 | 13 | 2exbidv 1628 |
. . . 4
⊢ (x = A →
(∃y∃z(y = B ∧ z = C ∧ φ) ↔ ∃y∃z(y = B ∧ z = C ∧ ψ))) |
15 | 11, 14 | ceqsexv 2895 |
. . 3
⊢ (∃x(x = A ∧ ∃y∃z(y = B ∧ z = C ∧ φ)) ↔
∃y∃z(y = B ∧ z = C ∧ ψ)) |
16 | | ceqsex3v.2 |
. . . 4
⊢ B ∈
V |
17 | | ceqsex3v.3 |
. . . 4
⊢ C ∈
V |
18 | | ceqsex3v.5 |
. . . 4
⊢ (y = B →
(ψ ↔ χ)) |
19 | | ceqsex3v.6 |
. . . 4
⊢ (z = C →
(χ ↔ θ)) |
20 | 16, 17, 18, 19 | ceqsex2v 2897 |
. . 3
⊢ (∃y∃z(y = B ∧ z = C ∧ ψ) ↔ θ) |
21 | 15, 20 | bitri 240 |
. 2
⊢ (∃x(x = A ∧ ∃y∃z(y = B ∧ z = C ∧ φ)) ↔
θ) |
22 | 10, 21 | bitri 240 |
1
⊢ (∃x∃y∃z((x = A ∧ y = B ∧ z = C) ∧ φ) ↔
θ) |