Proof of Theorem ceqsex4v
Step | Hyp | Ref
| Expression |
1 | | 19.42vv 1907 |
. . . 4
⊢ (∃z∃w((x = A ∧ y = B) ∧ (z = C ∧ w = D ∧ φ)) ↔ ((x = A ∧ y = B) ∧ ∃z∃w(z = C ∧ w = D ∧ φ))) |
2 | | 3anass 938 |
. . . . . 6
⊢ (((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ φ) ↔ ((x = A ∧ y = B) ∧ ((z = C ∧ w = D) ∧ φ))) |
3 | | df-3an 936 |
. . . . . . 7
⊢ ((z = C ∧ w = D ∧ φ) ↔ ((z = C ∧ w = D) ∧ φ)) |
4 | 3 | anbi2i 675 |
. . . . . 6
⊢ (((x = A ∧ y = B) ∧ (z = C ∧ w = D ∧ φ)) ↔ ((x = A ∧ y = B) ∧ ((z = C ∧ w = D) ∧ φ))) |
5 | 2, 4 | bitr4i 243 |
. . . . 5
⊢ (((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ φ) ↔ ((x = A ∧ y = B) ∧ (z = C ∧ w = D ∧ φ))) |
6 | 5 | 2exbii 1583 |
. . . 4
⊢ (∃z∃w((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ φ) ↔ ∃z∃w((x = A ∧ y = B) ∧ (z = C ∧ w = D ∧ φ))) |
7 | | df-3an 936 |
. . . 4
⊢ ((x = A ∧ y = B ∧ ∃z∃w(z = C ∧ w = D ∧ φ)) ↔ ((x = A ∧ y = B) ∧ ∃z∃w(z = C ∧ w = D ∧ φ))) |
8 | 1, 6, 7 | 3bitr4i 268 |
. . 3
⊢ (∃z∃w((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ φ) ↔ (x = A ∧ y = B ∧ ∃z∃w(z = C ∧ w = D ∧ φ))) |
9 | 8 | 2exbii 1583 |
. 2
⊢ (∃x∃y∃z∃w((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ φ) ↔ ∃x∃y(x = A ∧ y = B ∧ ∃z∃w(z = C ∧ w = D ∧ φ))) |
10 | | ceqsex4v.1 |
. . 3
⊢ A ∈
V |
11 | | ceqsex4v.2 |
. . 3
⊢ B ∈
V |
12 | | ceqsex4v.7 |
. . . . 5
⊢ (x = A →
(φ ↔ ψ)) |
13 | 12 | 3anbi3d 1258 |
. . . 4
⊢ (x = A →
((z = C
∧ w =
D ∧ φ) ↔ (z = C ∧ w = D ∧ ψ))) |
14 | 13 | 2exbidv 1628 |
. . 3
⊢ (x = A →
(∃z∃w(z = C ∧ w = D ∧ φ) ↔ ∃z∃w(z = C ∧ w = D ∧ ψ))) |
15 | | ceqsex4v.8 |
. . . . 5
⊢ (y = B →
(ψ ↔ χ)) |
16 | 15 | 3anbi3d 1258 |
. . . 4
⊢ (y = B →
((z = C
∧ w =
D ∧ ψ) ↔ (z = C ∧ w = D ∧ χ))) |
17 | 16 | 2exbidv 1628 |
. . 3
⊢ (y = B →
(∃z∃w(z = C ∧ w = D ∧ ψ) ↔ ∃z∃w(z = C ∧ w = D ∧ χ))) |
18 | 10, 11, 14, 17 | ceqsex2v 2897 |
. 2
⊢ (∃x∃y(x = A ∧ y = B ∧ ∃z∃w(z = C ∧ w = D ∧ φ)) ↔ ∃z∃w(z = C ∧ w = D ∧ χ)) |
19 | | ceqsex4v.3 |
. . 3
⊢ C ∈
V |
20 | | ceqsex4v.4 |
. . 3
⊢ D ∈
V |
21 | | ceqsex4v.9 |
. . 3
⊢ (z = C →
(χ ↔ θ)) |
22 | | ceqsex4v.10 |
. . 3
⊢ (w = D →
(θ ↔ τ)) |
23 | 19, 20, 21, 22 | ceqsex2v 2897 |
. 2
⊢ (∃z∃w(z = C ∧ w = D ∧ χ) ↔ τ) |
24 | 9, 18, 23 | 3bitri 262 |
1
⊢ (∃x∃y∃z∃w((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ φ) ↔ τ) |