New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqtr2i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
Ref | Expression |
---|---|
eqtr2i.1 | ⊢ A = B |
eqtr2i.2 | ⊢ B = C |
Ref | Expression |
---|---|
eqtr2i | ⊢ C = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2i.1 | . . 3 ⊢ A = B | |
2 | eqtr2i.2 | . . 3 ⊢ B = C | |
3 | 1, 2 | eqtri 2373 | . 2 ⊢ A = C |
4 | 3 | eqcomi 2357 | 1 ⊢ C = A |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: 3eqtrri 2378 3eqtr2ri 2380 dfun3 3494 symdif1 3520 iunin 3548 iinun 3549 dfif3 3673 dfsn2 3748 ssunpr 3869 sstp 3871 tfinnn 4535 xpindi 4865 xpindir 4866 foimacnv 5304 clos1base 5879 pmex 6006 fundmen 6044 nncdiv3 6278 nnc3p1n3p2 6281 nchoicelem1 6290 |
Copyright terms: Public domain | W3C validator |