NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqtr2i GIF version

Theorem eqtr2i 2374
Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.)
Hypotheses
Ref Expression
eqtr2i.1 A = B
eqtr2i.2 B = C
Assertion
Ref Expression
eqtr2i C = A

Proof of Theorem eqtr2i
StepHypRef Expression
1 eqtr2i.1 . . 3 A = B
2 eqtr2i.2 . . 3 B = C
31, 2eqtri 2373 . 2 A = C
43eqcomi 2357 1 C = A
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346
This theorem is referenced by:  3eqtrri  2378  3eqtr2ri  2380  dfun3  3494  symdif1  3520  iunin  3548  iinun  3549  dfif3  3673  dfsn2  3748  ssunpr  3869  sstp  3871  tfinnn  4535  xpindi  4865  xpindir  4866  foimacnv  5304  clos1base  5879  pmex  6006  fundmen  6044  nncdiv3  6278  nnc3p1n3p2  6281  nchoicelem1  6290
  Copyright terms: Public domain W3C validator