New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3eqtri | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
3eqtri.1 | ⊢ A = B |
3eqtri.2 | ⊢ B = C |
3eqtri.3 | ⊢ C = D |
Ref | Expression |
---|---|
3eqtri | ⊢ A = D |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . 2 ⊢ A = B | |
2 | 3eqtri.2 | . . 3 ⊢ B = C | |
3 | 3eqtri.3 | . . 3 ⊢ C = D | |
4 | 2, 3 | eqtri 2373 | . 2 ⊢ B = D |
5 | 1, 4 | eqtri 2373 | 1 ⊢ A = D |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: csbid 3144 un23 3423 in32 3468 dfrab2 3531 undifv 3625 undif2 3627 undifabs 3628 difun2 3630 difdifdir 3638 dfif4 3674 tpidm23 3824 unisn 3908 incompl 4074 pw10 4162 xpun 4835 dfdmf 4906 dfrnf 4963 res0 4978 resres 4981 resopab 5000 imai 5011 ima0 5014 epini 5022 imaundir 5041 dmtpop 5072 resdmres 5079 dmco 5090 coi2 5096 fvsnun1 5448 fvsnun2 5449 dmoprab 5575 rnoprab 5577 ov6g 5601 dmmpt 5684 rnmpt2 5718 cnvpprod 5842 mucid1 6144 sbthlem1 6204 scancan 6332 |
Copyright terms: Public domain | W3C validator |