Step | Hyp | Ref
| Expression |
1 | | peano2nc 6146 |
. . . . . 6
⊢ (A ∈ NC → (A
+c 1c) ∈
NC ) |
2 | 1 | adantr 451 |
. . . . 5
⊢ ((A ∈ NC ∧ B ∈ NC ) → (A
+c 1c) ∈
NC ) |
3 | 2 | adantr 451 |
. . . 4
⊢ (((A ∈ NC ∧ B ∈ NC ) ∧ (A +c 1c) =
(B +c
1c)) → (A
+c 1c) ∈
NC ) |
4 | | elncs 6120 |
. . . . 5
⊢ ((A +c 1c) ∈ NC ↔ ∃g(A +c 1c) = Nc g) |
5 | | simpr 447 |
. . . . . . . . 9
⊢ (((A +c 1c) =
(B +c
1c) ∧ (A +c 1c) = Nc g) →
(A +c
1c) = Nc g) |
6 | | eqtr2 2371 |
. . . . . . . . 9
⊢ (((A +c 1c) =
(B +c
1c) ∧ (A +c 1c) = Nc g) →
(B +c
1c) = Nc g) |
7 | 5, 6 | jca 518 |
. . . . . . . 8
⊢ (((A +c 1c) =
(B +c
1c) ∧ (A +c 1c) = Nc g) →
((A +c
1c) = Nc g ∧ (B +c 1c) = Nc g)) |
8 | | vex 2863 |
. . . . . . . . . . . . . 14
⊢ g ∈
V |
9 | 8 | ncid 6124 |
. . . . . . . . . . . . 13
⊢ g ∈ Nc g |
10 | | eleq2 2414 |
. . . . . . . . . . . . 13
⊢ ((A +c 1c) = Nc g →
(g ∈
(A +c
1c) ↔ g ∈ Nc g)) |
11 | 9, 10 | mpbiri 224 |
. . . . . . . . . . . 12
⊢ ((A +c 1c) = Nc g → g ∈ (A +c
1c)) |
12 | | elsuc 4414 |
. . . . . . . . . . . . 13
⊢ (g ∈ (A +c 1c) ↔
∃t ∈ A ∃x ∈ ∼ tg = (t ∪ {x})) |
13 | 12 | biimpi 186 |
. . . . . . . . . . . 12
⊢ (g ∈ (A +c 1c) →
∃t ∈ A ∃x ∈ ∼ tg = (t ∪ {x})) |
14 | 11, 13 | syl 15 |
. . . . . . . . . . 11
⊢ ((A +c 1c) = Nc g → ∃t ∈ A ∃x ∈ ∼ tg = (t ∪ {x})) |
15 | | eleq2 2414 |
. . . . . . . . . . . . 13
⊢ ((B +c 1c) = Nc g →
(g ∈
(B +c
1c) ↔ g ∈ Nc g)) |
16 | 9, 15 | mpbiri 224 |
. . . . . . . . . . . 12
⊢ ((B +c 1c) = Nc g → g ∈ (B +c
1c)) |
17 | | elsuc 4414 |
. . . . . . . . . . . 12
⊢ (g ∈ (B +c 1c) ↔
∃f ∈ B ∃y ∈ ∼ fg = (f ∪ {y})) |
18 | 16, 17 | sylib 188 |
. . . . . . . . . . 11
⊢ ((B +c 1c) = Nc g → ∃f ∈ B ∃y ∈ ∼ fg = (f ∪ {y})) |
19 | 14, 18 | anim12i 549 |
. . . . . . . . . 10
⊢ (((A +c 1c) = Nc g ∧ (B
+c 1c) = Nc
g) → (∃t ∈ A ∃x ∈ ∼ tg = (t ∪ {x})
∧ ∃f ∈ B ∃y ∈ ∼ fg = (f ∪ {y}))) |
20 | | reeanv 2779 |
. . . . . . . . . . . . 13
⊢ (∃x ∈ ∼ t∃y ∈ ∼ f(g = (t ∪ {x})
∧ g =
(f ∪ {y})) ↔ (∃x ∈ ∼ tg = (t ∪ {x})
∧ ∃y ∈ ∼ fg = (f ∪ {y}))) |
21 | 20 | 2rexbii 2642 |
. . . . . . . . . . . 12
⊢ (∃t ∈ A ∃f ∈ B ∃x ∈ ∼ t∃y ∈ ∼ f(g = (t ∪ {x})
∧ g =
(f ∪ {y})) ↔ ∃t ∈ A ∃f ∈ B (∃x ∈ ∼ tg = (t ∪ {x})
∧ ∃y ∈ ∼ fg = (f ∪ {y}))) |
22 | | reeanv 2779 |
. . . . . . . . . . . 12
⊢ (∃t ∈ A ∃f ∈ B (∃x ∈ ∼ tg = (t ∪ {x})
∧ ∃y ∈ ∼ fg = (f ∪ {y}))
↔ (∃t ∈ A ∃x ∈ ∼ tg = (t ∪ {x})
∧ ∃f ∈ B ∃y ∈ ∼ fg = (f ∪ {y}))) |
23 | 21, 22 | bitri 240 |
. . . . . . . . . . 11
⊢ (∃t ∈ A ∃f ∈ B ∃x ∈ ∼ t∃y ∈ ∼ f(g = (t ∪ {x})
∧ g =
(f ∪ {y})) ↔ (∃t ∈ A ∃x ∈ ∼ tg = (t ∪ {x})
∧ ∃f ∈ B ∃y ∈ ∼ fg = (f ∪ {y}))) |
24 | | ncseqnc 6129 |
. . . . . . . . . . . . . . 15
⊢ (A ∈ NC → (A = Nc t ↔ t ∈ A)) |
25 | | ncseqnc 6129 |
. . . . . . . . . . . . . . 15
⊢ (B ∈ NC → (B = Nc f ↔ f ∈ B)) |
26 | 24, 25 | bi2anan9 843 |
. . . . . . . . . . . . . 14
⊢ ((A ∈ NC ∧ B ∈ NC ) → ((A =
Nc t ∧ B = Nc f) ↔
(t ∈
A ∧
f ∈
B))) |
27 | 26 | biimpar 471 |
. . . . . . . . . . . . 13
⊢ (((A ∈ NC ∧ B ∈ NC ) ∧ (t ∈ A ∧ f ∈ B)) → (A =
Nc t ∧ B = Nc f)) |
28 | | eqtr2 2371 |
. . . . . . . . . . . . . . . 16
⊢ ((g = (t ∪
{x}) ∧
g = (f
∪ {y})) → (t ∪ {x}) =
(f ∪ {y})) |
29 | | vex 2863 |
. . . . . . . . . . . . . . . . . 18
⊢ x ∈
V |
30 | 29 | elcompl 3226 |
. . . . . . . . . . . . . . . . 17
⊢ (x ∈ ∼ t ↔ ¬ x
∈ t) |
31 | | vex 2863 |
. . . . . . . . . . . . . . . . . 18
⊢ y ∈
V |
32 | 31 | elcompl 3226 |
. . . . . . . . . . . . . . . . 17
⊢ (y ∈ ∼ f ↔ ¬ y
∈ f) |
33 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ t ∈
V |
34 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ f ∈
V |
35 | 33, 34, 29, 31 | enadj 6061 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((t ∪ {x}) =
(f ∪ {y}) ∧ ¬
x ∈
t ∧ ¬
y ∈
f) → t ≈ f) |
36 | 35 | 3expb 1152 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((t ∪ {x}) =
(f ∪ {y}) ∧ (¬
x ∈
t ∧ ¬
y ∈
f)) → t ≈ f) |
37 | 36 | ancoms 439 |
. . . . . . . . . . . . . . . . . 18
⊢ (((¬ x ∈ t ∧ ¬ y ∈ f) ∧ (t ∪ {x}) =
(f ∪ {y})) → t
≈ f) |
38 | 37 | ex 423 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬ x ∈ t ∧ ¬ y ∈ f) → ((t
∪ {x}) = (f ∪ {y})
→ t ≈ f)) |
39 | 30, 32, 38 | syl2anb 465 |
. . . . . . . . . . . . . . . 16
⊢ ((x ∈ ∼ t ∧ y ∈ ∼ f) → ((t
∪ {x}) = (f ∪ {y})
→ t ≈ f)) |
40 | 28, 39 | syl5 28 |
. . . . . . . . . . . . . . 15
⊢ ((x ∈ ∼ t ∧ y ∈ ∼ f) → ((g =
(t ∪ {x}) ∧ g = (f ∪
{y})) → t ≈ f)) |
41 | 40 | rexlimivv 2744 |
. . . . . . . . . . . . . 14
⊢ (∃x ∈ ∼ t∃y ∈ ∼ f(g = (t ∪ {x})
∧ g =
(f ∪ {y})) → t
≈ f) |
42 | | eqeq12 2365 |
. . . . . . . . . . . . . . 15
⊢ ((A = Nc t ∧ B = Nc f) → (A =
B ↔ Nc
t = Nc
f)) |
43 | 33 | eqnc 6128 |
. . . . . . . . . . . . . . 15
⊢ ( Nc t = Nc f ↔ t ≈ f) |
44 | 42, 43 | syl6bb 252 |
. . . . . . . . . . . . . 14
⊢ ((A = Nc t ∧ B = Nc f) → (A =
B ↔ t ≈ f)) |
45 | 41, 44 | syl5ibr 212 |
. . . . . . . . . . . . 13
⊢ ((A = Nc t ∧ B = Nc f) → (∃x ∈ ∼ t∃y ∈ ∼ f(g = (t ∪ {x})
∧ g =
(f ∪ {y})) → A =
B)) |
46 | 27, 45 | syl 15 |
. . . . . . . . . . . 12
⊢ (((A ∈ NC ∧ B ∈ NC ) ∧ (t ∈ A ∧ f ∈ B)) → (∃x ∈ ∼ t∃y ∈ ∼ f(g = (t ∪ {x})
∧ g =
(f ∪ {y})) → A =
B)) |
47 | 46 | rexlimdvva 2746 |
. . . . . . . . . . 11
⊢ ((A ∈ NC ∧ B ∈ NC ) → (∃t ∈ A ∃f ∈ B ∃x ∈ ∼ t∃y ∈ ∼ f(g = (t ∪ {x})
∧ g =
(f ∪ {y})) → A =
B)) |
48 | 23, 47 | syl5bir 209 |
. . . . . . . . . 10
⊢ ((A ∈ NC ∧ B ∈ NC ) → ((∃t ∈ A ∃x ∈ ∼ tg = (t ∪ {x})
∧ ∃f ∈ B ∃y ∈ ∼ fg = (f ∪ {y}))
→ A = B)) |
49 | 19, 48 | syl5 28 |
. . . . . . . . 9
⊢ ((A ∈ NC ∧ B ∈ NC ) → (((A
+c 1c) = Nc
g ∧
(B +c
1c) = Nc g) → A =
B)) |
50 | 49 | imp 418 |
. . . . . . . 8
⊢ (((A ∈ NC ∧ B ∈ NC ) ∧ ((A +c 1c) = Nc g ∧ (B
+c 1c) = Nc
g)) → A = B) |
51 | 7, 50 | sylan2 460 |
. . . . . . 7
⊢ (((A ∈ NC ∧ B ∈ NC ) ∧ ((A +c 1c) =
(B +c
1c) ∧ (A +c 1c) = Nc g)) →
A = B) |
52 | 51 | expr 598 |
. . . . . 6
⊢ (((A ∈ NC ∧ B ∈ NC ) ∧ (A +c 1c) =
(B +c
1c)) → ((A
+c 1c) = Nc
g → A = B)) |
53 | 52 | exlimdv 1636 |
. . . . 5
⊢ (((A ∈ NC ∧ B ∈ NC ) ∧ (A +c 1c) =
(B +c
1c)) → (∃g(A
+c 1c) = Nc
g → A = B)) |
54 | 4, 53 | syl5bi 208 |
. . . 4
⊢ (((A ∈ NC ∧ B ∈ NC ) ∧ (A +c 1c) =
(B +c
1c)) → ((A
+c 1c) ∈
NC → A =
B)) |
55 | 3, 54 | mpd 14 |
. . 3
⊢ (((A ∈ NC ∧ B ∈ NC ) ∧ (A +c 1c) =
(B +c
1c)) → A = B) |
56 | 55 | ex 423 |
. 2
⊢ ((A ∈ NC ∧ B ∈ NC ) → ((A
+c 1c) = (B +c 1c) →
A = B)) |
57 | | addceq1 4384 |
. 2
⊢ (A = B →
(A +c
1c) = (B
+c 1c)) |
58 | 56, 57 | impbid1 194 |
1
⊢ ((A ∈ NC ∧ B ∈ NC ) → ((A
+c 1c) = (B +c 1c) ↔
A = B)) |