New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3expia | GIF version |
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
3expia | ⊢ ((φ ∧ ψ) → (χ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
2 | 1 | 3exp 1150 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
3 | 2 | imp 418 | 1 ⊢ ((φ ∧ ψ) → (χ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: mp3an3 1266 3gencl 2890 moi 3020 ltfintri 4467 tfindi 4497 nnadjoin 4521 nnpweq 4524 sfintfin 4533 tfinnn 4535 sfinltfin 4536 vfintle 4547 suc11nnc 4559 phi11lem1 4596 3optocl 4841 ndmovord 5621 ov2gf 5712 antird 5929 iserd 5943 mapvalg 6010 enprmaplem5 6081 enprmaplem6 6082 nclenc 6223 lenc 6224 nclenn 6250 nchoicelem17 6306 nchoicelem19 6308 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |