New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > absneu | GIF version |
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) |
Ref | Expression |
---|---|
absneu | ⊢ ((A ∈ V ∧ {x ∣ φ} = {A}) → ∃!xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3745 | . . . . 5 ⊢ (y = A → {y} = {A}) | |
2 | 1 | eqeq2d 2364 | . . . 4 ⊢ (y = A → ({x ∣ φ} = {y} ↔ {x ∣ φ} = {A})) |
3 | 2 | spcegv 2941 | . . 3 ⊢ (A ∈ V → ({x ∣ φ} = {A} → ∃y{x ∣ φ} = {y})) |
4 | 3 | imp 418 | . 2 ⊢ ((A ∈ V ∧ {x ∣ φ} = {A}) → ∃y{x ∣ φ} = {y}) |
5 | euabsn2 3792 | . 2 ⊢ (∃!xφ ↔ ∃y{x ∣ φ} = {y}) | |
6 | 4, 5 | sylibr 203 | 1 ⊢ ((A ∈ V ∧ {x ∣ φ} = {A}) → ∃!xφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 {cab 2339 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sn 3742 |
This theorem is referenced by: rabsneu 3796 |
Copyright terms: Public domain | W3C validator |