| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > reusn | GIF version | ||
| Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| reusn | ⊢ (∃!x ∈ A φ ↔ ∃y{x ∈ A ∣ φ} = {y}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 3792 | . 2 ⊢ (∃!x(x ∈ A ∧ φ) ↔ ∃y{x ∣ (x ∈ A ∧ φ)} = {y}) | |
| 2 | df-reu 2622 | . 2 ⊢ (∃!x ∈ A φ ↔ ∃!x(x ∈ A ∧ φ)) | |
| 3 | df-rab 2624 | . . . 4 ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} | |
| 4 | 3 | eqeq1i 2360 | . . 3 ⊢ ({x ∈ A ∣ φ} = {y} ↔ {x ∣ (x ∈ A ∧ φ)} = {y}) |
| 5 | 4 | exbii 1582 | . 2 ⊢ (∃y{x ∈ A ∣ φ} = {y} ↔ ∃y{x ∣ (x ∈ A ∧ φ)} = {y}) |
| 6 | 1, 2, 5 | 3bitr4i 268 | 1 ⊢ (∃!x ∈ A φ ↔ ∃y{x ∈ A ∣ φ} = {y}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 {cab 2339 ∃!wreu 2617 {crab 2619 {csn 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-reu 2622 df-rab 2624 df-sn 3742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |