| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > euabsn2 | GIF version | ||
| Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| euabsn2 | ⊢ (∃!xφ ↔ ∃y{x ∣ φ} = {y}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2208 | . 2 ⊢ (∃!xφ ↔ ∃y∀x(φ ↔ x = y)) | |
| 2 | eqabcb 2460 | . . . 4 ⊢ ({x ∣ φ} = {y} ↔ ∀x(φ ↔ x ∈ {y})) | |
| 3 | elsn 3749 | . . . . . 6 ⊢ (x ∈ {y} ↔ x = y) | |
| 4 | 3 | bibi2i 304 | . . . . 5 ⊢ ((φ ↔ x ∈ {y}) ↔ (φ ↔ x = y)) |
| 5 | 4 | albii 1566 | . . . 4 ⊢ (∀x(φ ↔ x ∈ {y}) ↔ ∀x(φ ↔ x = y)) |
| 6 | 2, 5 | bitri 240 | . . 3 ⊢ ({x ∣ φ} = {y} ↔ ∀x(φ ↔ x = y)) |
| 7 | 6 | exbii 1582 | . 2 ⊢ (∃y{x ∣ φ} = {y} ↔ ∃y∀x(φ ↔ x = y)) |
| 8 | 1, 7 | bitr4i 243 | 1 ⊢ (∃!xφ ↔ ∃y{x ∣ φ} = {y}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 {cab 2339 {csn 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-sn 3742 |
| This theorem is referenced by: euabsn 3793 reusn 3794 absneu 3795 uniintab 3965 |
| Copyright terms: Public domain | W3C validator |