NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rabsneu GIF version

Theorem rabsneu 3796
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabsneu ((A V {x B φ} = {A}) → ∃!x B φ)

Proof of Theorem rabsneu
StepHypRef Expression
1 df-rab 2624 . . . 4 {x B φ} = {x (x B φ)}
21eqeq1i 2360 . . 3 ({x B φ} = {A} ↔ {x (x B φ)} = {A})
3 absneu 3795 . . 3 ((A V {x (x B φ)} = {A}) → ∃!x(x B φ))
42, 3sylan2b 461 . 2 ((A V {x B φ} = {A}) → ∃!x(x B φ))
5 df-reu 2622 . 2 (∃!x B φ∃!x(x B φ))
64, 5sylibr 203 1 ((A V {x B φ} = {A}) → ∃!x B φ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  ∃!weu 2204  {cab 2339  ∃!wreu 2617  {crab 2619  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-reu 2622  df-rab 2624  df-v 2862  df-sn 3742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator