Step | Hyp | Ref
| Expression |
1 | | nchoicelem1 6290 |
. . . 4
⊢ (n ∈ Nn → ¬ n =
( Tc n +c
1c)) |
2 | | nchoicelem2 6291 |
. . . 4
⊢ (n ∈ Nn → ¬ n =
( Tc n +c
2c)) |
3 | | ioran 476 |
. . . 4
⊢ (¬ (n = ( Tc
n +c
1c) ∨ n = ( Tc
n +c
2c)) ↔ (¬ n = (
Tc n +c 1c) ∧ ¬ n = (
Tc n +c
2c))) |
4 | 1, 2, 3 | sylanbrc 645 |
. . 3
⊢ (n ∈ Nn → ¬ (n =
( Tc n +c 1c) ∨ n = ( Tc n
+c 2c))) |
5 | 4 | nrex 2717 |
. 2
⊢ ¬ ∃n ∈ Nn (n = ( Tc
n +c
1c) ∨ n = ( Tc
n +c
2c)) |
6 | | nchoicelem19 6308 |
. . 3
⊢ ( ≤c
We NC → ∃m ∈ NC (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) |
7 | | finnc 6244 |
. . . . . . . 8
⊢ (( Spac ‘m) ∈ Fin ↔ Nc ( Spac ‘m) ∈ Nn ) |
8 | 7 | biimpi 186 |
. . . . . . 7
⊢ (( Spac ‘m) ∈ Fin → Nc ( Spac ‘m) ∈ Nn ) |
9 | 8 | ad2antrl 708 |
. . . . . 6
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → Nc
( Spac ‘m) ∈ Nn ) |
10 | | simpll 730 |
. . . . . . . . 9
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ≤c We NC ) |
11 | | simplr 731 |
. . . . . . . . 9
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → m ∈ NC ) |
12 | | simprl 732 |
. . . . . . . . 9
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ( Spac ‘m) ∈ Fin ) |
13 | | nchoicelem17 6306 |
. . . . . . . . 9
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ( Spac
‘m) ∈ Fin ) → ((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))) |
14 | 10, 11, 12, 13 | syl3anc 1182 |
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))) |
15 | 14 | simprd 449 |
. . . . . . 7
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c))) |
16 | | simprr 733 |
. . . . . . . . . . 11
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → Tc m =
m) |
17 | 16 | fveq2d 5333 |
. . . . . . . . . 10
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ( Spac ‘ Tc m) = (
Spac ‘m)) |
18 | 17 | nceqd 6111 |
. . . . . . . . 9
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → Nc
( Spac ‘ Tc m) =
Nc ( Spac
‘m)) |
19 | 18 | eqeq1d 2361 |
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ↔ Nc ( Spac ‘m) = ( Tc
Nc ( Spac
‘m) +c
1c))) |
20 | 18 | eqeq1d 2361 |
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c) ↔ Nc ( Spac ‘m) = ( Tc
Nc ( Spac
‘m) +c
2c))) |
21 | 19, 20 | orbi12d 690 |
. . . . . . 7
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → (( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)) ↔ ( Nc ( Spac ‘m) = ( Tc
Nc ( Spac
‘m) +c
1c) ∨ Nc ( Spac
‘m) = ( Tc Nc ( Spac ‘m) +c
2c)))) |
22 | 15, 21 | mpbid 201 |
. . . . . 6
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ( Nc ( Spac
‘m) = ( Tc Nc ( Spac ‘m) +c 1c) ∨ Nc ( Spac ‘m) = ( Tc
Nc ( Spac
‘m) +c
2c))) |
23 | | id 19 |
. . . . . . . . 9
⊢ (n = Nc ( Spac ‘m) → n =
Nc ( Spac
‘m)) |
24 | | tceq 6159 |
. . . . . . . . . 10
⊢ (n = Nc ( Spac ‘m) → Tc
n = Tc Nc ( Spac ‘m)) |
25 | 24 | addceq1d 4390 |
. . . . . . . . 9
⊢ (n = Nc ( Spac ‘m) → ( Tc n
+c 1c) = ( Tc Nc ( Spac ‘m) +c
1c)) |
26 | 23, 25 | eqeq12d 2367 |
. . . . . . . 8
⊢ (n = Nc ( Spac ‘m) → (n = (
Tc n +c 1c) ↔
Nc ( Spac
‘m) = ( Tc Nc ( Spac ‘m) +c
1c))) |
27 | 24 | addceq1d 4390 |
. . . . . . . . 9
⊢ (n = Nc ( Spac ‘m) → ( Tc n
+c 2c) = ( Tc Nc ( Spac ‘m) +c
2c)) |
28 | 23, 27 | eqeq12d 2367 |
. . . . . . . 8
⊢ (n = Nc ( Spac ‘m) → (n = (
Tc n +c 2c) ↔
Nc ( Spac
‘m) = ( Tc Nc ( Spac ‘m) +c
2c))) |
29 | 26, 28 | orbi12d 690 |
. . . . . . 7
⊢ (n = Nc ( Spac ‘m) → ((n =
( Tc n +c 1c) ∨ n = ( Tc n
+c 2c)) ↔ ( Nc ( Spac
‘m) = ( Tc Nc ( Spac ‘m) +c 1c) ∨ Nc ( Spac ‘m) = ( Tc
Nc ( Spac
‘m) +c
2c)))) |
30 | 29 | rspcev 2956 |
. . . . . 6
⊢ (( Nc ( Spac
‘m) ∈ Nn ∧ ( Nc ( Spac ‘m) = ( Tc
Nc ( Spac
‘m) +c
1c) ∨ Nc ( Spac
‘m) = ( Tc Nc ( Spac ‘m) +c 2c)))
→ ∃n ∈ Nn (n = ( Tc n
+c 1c) ∨
n = ( Tc n
+c 2c))) |
31 | 9, 22, 30 | syl2anc 642 |
. . . . 5
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ∃n ∈ Nn (n = ( Tc
n +c
1c) ∨ n = ( Tc
n +c
2c))) |
32 | 31 | ex 423 |
. . . 4
⊢ (( ≤c
We NC ∧ m ∈ NC ) → (((
Spac ‘m) ∈ Fin ∧ Tc m =
m) → ∃n ∈ Nn (n = ( Tc
n +c
1c) ∨ n = ( Tc
n +c
2c)))) |
33 | 32 | rexlimdva 2739 |
. . 3
⊢ ( ≤c
We NC → (∃m ∈ NC (( Spac ‘m) ∈ Fin ∧ Tc m =
m) → ∃n ∈ Nn (n = ( Tc
n +c
1c) ∨ n = ( Tc
n +c
2c)))) |
34 | 6, 33 | mpd 14 |
. 2
⊢ ( ≤c
We NC → ∃n ∈ Nn (n = ( Tc
n +c
1c) ∨ n = ( Tc
n +c
2c))) |
35 | 5, 34 | mto 167 |
1
⊢ ¬
≤c We NC |