| Step | Hyp | Ref
 | Expression | 
| 1 |   | nchoicelem1 6290 | 
. . . 4
⊢ (n ∈ Nn → ¬ n =
( Tc n +c
1c)) | 
| 2 |   | nchoicelem2 6291 | 
. . . 4
⊢ (n ∈ Nn → ¬ n =
( Tc n +c
2c)) | 
| 3 |   | ioran 476 | 
. . . 4
⊢ (¬ (n = ( Tc
n +c
1c)  ∨ n = ( Tc
n +c
2c)) ↔ (¬ n = (
Tc n +c 1c) ∧ ¬ n = (
Tc n +c
2c))) | 
| 4 | 1, 2, 3 | sylanbrc 645 | 
. . 3
⊢ (n ∈ Nn → ¬ (n =
( Tc n +c 1c)  ∨ n = ( Tc n
+c 2c))) | 
| 5 | 4 | nrex 2717 | 
. 2
⊢  ¬ ∃n ∈ Nn (n = ( Tc
n +c
1c)  ∨ n = ( Tc
n +c
2c)) | 
| 6 |   | nchoicelem19 6308 | 
. . 3
⊢ ( ≤c
We NC → ∃m ∈ NC (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) | 
| 7 |   | finnc 6244 | 
. . . . . . . 8
⊢ (( Spac ‘m) ∈ Fin ↔ Nc ( Spac ‘m) ∈ Nn ) | 
| 8 | 7 | biimpi 186 | 
. . . . . . 7
⊢ (( Spac ‘m) ∈ Fin → Nc ( Spac ‘m) ∈ Nn ) | 
| 9 | 8 | ad2antrl 708 | 
. . . . . 6
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → Nc
( Spac ‘m) ∈ Nn ) | 
| 10 |   | simpll 730 | 
. . . . . . . . 9
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ≤c We NC ) | 
| 11 |   | simplr 731 | 
. . . . . . . . 9
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → m ∈ NC ) | 
| 12 |   | simprl 732 | 
. . . . . . . . 9
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ( Spac ‘m) ∈ Fin ) | 
| 13 |   | nchoicelem17 6306 | 
. . . . . . . . 9
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ( Spac
‘m) ∈ Fin ) → ((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))) | 
| 14 | 10, 11, 12, 13 | syl3anc 1182 | 
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))) | 
| 15 | 14 | simprd 449 | 
. . . . . . 7
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c)  ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c))) | 
| 16 |   | simprr 733 | 
. . . . . . . . . . 11
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → Tc m =
m) | 
| 17 | 16 | fveq2d 5333 | 
. . . . . . . . . 10
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ( Spac ‘ Tc m) = (
Spac ‘m)) | 
| 18 | 17 | nceqd 6111 | 
. . . . . . . . 9
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → Nc
( Spac ‘ Tc m) =
Nc ( Spac
‘m)) | 
| 19 | 18 | eqeq1d 2361 | 
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ↔ Nc ( Spac ‘m) = ( Tc
Nc ( Spac
‘m) +c
1c))) | 
| 20 | 18 | eqeq1d 2361 | 
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c) ↔ Nc ( Spac ‘m) = ( Tc
Nc ( Spac
‘m) +c
2c))) | 
| 21 | 19, 20 | orbi12d 690 | 
. . . . . . 7
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → (( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c)  ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)) ↔ ( Nc ( Spac ‘m) = ( Tc
Nc ( Spac
‘m) +c
1c)  ∨ Nc ( Spac
‘m) = ( Tc Nc ( Spac ‘m) +c
2c)))) | 
| 22 | 15, 21 | mpbid 201 | 
. . . . . 6
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ( Nc ( Spac
‘m) = ( Tc Nc ( Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘m) = ( Tc
Nc ( Spac
‘m) +c
2c))) | 
| 23 |   | id 19 | 
. . . . . . . . 9
⊢ (n = Nc ( Spac ‘m) → n =
Nc ( Spac
‘m)) | 
| 24 |   | tceq 6159 | 
. . . . . . . . . 10
⊢ (n = Nc ( Spac ‘m) → Tc
n = Tc Nc ( Spac ‘m)) | 
| 25 | 24 | addceq1d 4390 | 
. . . . . . . . 9
⊢ (n = Nc ( Spac ‘m) → ( Tc n
+c 1c) = ( Tc Nc ( Spac ‘m) +c
1c)) | 
| 26 | 23, 25 | eqeq12d 2367 | 
. . . . . . . 8
⊢ (n = Nc ( Spac ‘m) → (n = (
Tc n +c 1c) ↔
Nc ( Spac
‘m) = ( Tc Nc ( Spac ‘m) +c
1c))) | 
| 27 | 24 | addceq1d 4390 | 
. . . . . . . . 9
⊢ (n = Nc ( Spac ‘m) → ( Tc n
+c 2c) = ( Tc Nc ( Spac ‘m) +c
2c)) | 
| 28 | 23, 27 | eqeq12d 2367 | 
. . . . . . . 8
⊢ (n = Nc ( Spac ‘m) → (n = (
Tc n +c 2c) ↔
Nc ( Spac
‘m) = ( Tc Nc ( Spac ‘m) +c
2c))) | 
| 29 | 26, 28 | orbi12d 690 | 
. . . . . . 7
⊢ (n = Nc ( Spac ‘m) → ((n =
( Tc n +c 1c)  ∨ n = ( Tc n
+c 2c)) ↔ ( Nc ( Spac
‘m) = ( Tc Nc ( Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘m) = ( Tc
Nc ( Spac
‘m) +c
2c)))) | 
| 30 | 29 | rspcev 2956 | 
. . . . . 6
⊢ (( Nc ( Spac
‘m) ∈ Nn ∧ ( Nc ( Spac ‘m) = ( Tc
Nc ( Spac
‘m) +c
1c)  ∨ Nc ( Spac
‘m) = ( Tc Nc ( Spac ‘m) +c 2c)))
→ ∃n ∈ Nn (n = ( Tc n
+c 1c)  ∨
n = ( Tc n
+c 2c))) | 
| 31 | 9, 22, 30 | syl2anc 642 | 
. . . . 5
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) → ∃n ∈ Nn (n = ( Tc
n +c
1c)  ∨ n = ( Tc
n +c
2c))) | 
| 32 | 31 | ex 423 | 
. . . 4
⊢ (( ≤c
We NC ∧ m ∈ NC ) → (((
Spac ‘m) ∈ Fin ∧ Tc m =
m) → ∃n ∈ Nn (n = ( Tc
n +c
1c)  ∨ n = ( Tc
n +c
2c)))) | 
| 33 | 32 | rexlimdva 2739 | 
. . 3
⊢ ( ≤c
We NC → (∃m ∈ NC (( Spac ‘m) ∈ Fin ∧ Tc m =
m) → ∃n ∈ Nn (n = ( Tc
n +c
1c)  ∨ n = ( Tc
n +c
2c)))) | 
| 34 | 6, 33 | mpd 14 | 
. 2
⊢ ( ≤c
We NC → ∃n ∈ Nn (n = ( Tc
n +c
1c)  ∨ n = ( Tc
n +c
2c))) | 
| 35 | 5, 34 | mto 167 | 
1
⊢  ¬
≤c We NC |