New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simprl | GIF version |
Description: Simplification of a conjunction. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
simprl | ⊢ ((φ ∧ (ψ ∧ χ)) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (ψ → ψ) | |
2 | 1 | ad2antrl 708 | 1 ⊢ ((φ ∧ (ψ ∧ χ)) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simp1rl 1020 simp2rl 1024 simp3rl 1028 rmob 3135 prepeano4 4452 preaddccan2 4456 tfin11 4494 tfinltfin 4502 evenodddisj 4517 sfindbl 4531 tfinnn 4535 vfinspsslem1 4551 vfinspclt 4553 xp0r 4843 weds 5939 ertr 5955 erth 5969 enadj 6061 enprmaplem3 6079 nntccl 6171 sbthlem3 6206 sbth 6207 tlecg 6231 nchoicelem6 6295 nchoicelem8 6297 nchoicelem19 6308 nchoice 6309 |
Copyright terms: Public domain | W3C validator |