| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eu1 | GIF version | ||
| Description: An alternate way to express uniqueness used by some authors. Exercise 2(b) of [Margaris] p. 110. (Contributed by NM, 20-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| eu1.1 | ⊢ Ⅎyφ |
| Ref | Expression |
|---|---|
| eu1 | ⊢ (∃!xφ ↔ ∃x(φ ∧ ∀y([y / x]φ → x = y))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfs1v 2106 | . . 3 ⊢ Ⅎx[y / x]φ | |
| 2 | 1 | euf 2210 | . 2 ⊢ (∃!y[y / x]φ ↔ ∃x∀y([y / x]φ ↔ y = x)) |
| 3 | eu1.1 | . . 3 ⊢ Ⅎyφ | |
| 4 | 3 | sb8eu 2222 | . 2 ⊢ (∃!xφ ↔ ∃!y[y / x]φ) |
| 5 | equcom 1680 | . . . . . . 7 ⊢ (x = y ↔ y = x) | |
| 6 | 5 | imbi2i 303 | . . . . . 6 ⊢ (([y / x]φ → x = y) ↔ ([y / x]φ → y = x)) |
| 7 | 6 | albii 1566 | . . . . 5 ⊢ (∀y([y / x]φ → x = y) ↔ ∀y([y / x]φ → y = x)) |
| 8 | 3 | sb6rf 2091 | . . . . 5 ⊢ (φ ↔ ∀y(y = x → [y / x]φ)) |
| 9 | 7, 8 | anbi12i 678 | . . . 4 ⊢ ((∀y([y / x]φ → x = y) ∧ φ) ↔ (∀y([y / x]φ → y = x) ∧ ∀y(y = x → [y / x]φ))) |
| 10 | ancom 437 | . . . 4 ⊢ ((φ ∧ ∀y([y / x]φ → x = y)) ↔ (∀y([y / x]φ → x = y) ∧ φ)) | |
| 11 | albiim 1611 | . . . 4 ⊢ (∀y([y / x]φ ↔ y = x) ↔ (∀y([y / x]φ → y = x) ∧ ∀y(y = x → [y / x]φ))) | |
| 12 | 9, 10, 11 | 3bitr4i 268 | . . 3 ⊢ ((φ ∧ ∀y([y / x]φ → x = y)) ↔ ∀y([y / x]φ ↔ y = x)) |
| 13 | 12 | exbii 1582 | . 2 ⊢ (∃x(φ ∧ ∀y([y / x]φ → x = y)) ↔ ∃x∀y([y / x]φ ↔ y = x)) |
| 14 | 2, 4, 13 | 3bitr4i 268 | 1 ⊢ (∃!xφ ↔ ∃x(φ ∧ ∀y([y / x]φ → x = y))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 [wsb 1648 ∃!weu 2204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 |
| This theorem is referenced by: euex 2227 eu2 2229 fvfullfunlem1 5862 |
| Copyright terms: Public domain | W3C validator |