New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvcsbv | GIF version |
Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
cbvcsbv.1 | ⊢ (x = y → B = C) |
Ref | Expression |
---|---|
cbvcsbv | ⊢ [A / x]B = [A / y]C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2490 | . 2 ⊢ ℲyB | |
2 | nfcv 2490 | . 2 ⊢ ℲxC | |
3 | cbvcsbv.1 | . 2 ⊢ (x = y → B = C) | |
4 | 1, 2, 3 | cbvcsb 3141 | 1 ⊢ [A / x]B = [A / y]C |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |