New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvcsb | GIF version |
Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on A. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
cbvcsb.1 | ⊢ ℲyC |
cbvcsb.2 | ⊢ ℲxD |
cbvcsb.3 | ⊢ (x = y → C = D) |
Ref | Expression |
---|---|
cbvcsb | ⊢ [A / x]C = [A / y]D |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcsb.1 | . . . . 5 ⊢ ℲyC | |
2 | 1 | nfcri 2484 | . . . 4 ⊢ Ⅎy z ∈ C |
3 | cbvcsb.2 | . . . . 5 ⊢ ℲxD | |
4 | 3 | nfcri 2484 | . . . 4 ⊢ Ⅎx z ∈ D |
5 | cbvcsb.3 | . . . . 5 ⊢ (x = y → C = D) | |
6 | 5 | eleq2d 2420 | . . . 4 ⊢ (x = y → (z ∈ C ↔ z ∈ D)) |
7 | 2, 4, 6 | cbvsbc 3075 | . . 3 ⊢ ([̣A / x]̣z ∈ C ↔ [̣A / y]̣z ∈ D) |
8 | 7 | abbii 2466 | . 2 ⊢ {z ∣ [̣A / x]̣z ∈ C} = {z ∣ [̣A / y]̣z ∈ D} |
9 | df-csb 3138 | . 2 ⊢ [A / x]C = {z ∣ [̣A / x]̣z ∈ C} | |
10 | df-csb 3138 | . 2 ⊢ [A / y]D = {z ∣ [̣A / y]̣z ∈ D} | |
11 | 8, 9, 10 | 3eqtr4i 2383 | 1 ⊢ [A / x]C = [A / y]D |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 [̣wsbc 3047 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: cbvcsbv 3142 |
Copyright terms: Public domain | W3C validator |