NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbeq1d GIF version

Theorem csbeq1d 3143
Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.)
Hypothesis
Ref Expression
csbeq1d.1 (φA = B)
Assertion
Ref Expression
csbeq1d (φ[A / x]C = [B / x]C)

Proof of Theorem csbeq1d
StepHypRef Expression
1 csbeq1d.1 . 2 (φA = B)
2 csbeq1 3140 . 2 (A = B[A / x]C = [B / x]C)
31, 2syl 15 1 (φ[A / x]C = [B / x]C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  [csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-sbc 3048  df-csb 3138
This theorem is referenced by:  csbidmg  3191  csbco3g  3194  fmpt2x  5731
  Copyright terms: Public domain W3C validator