New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > tz6.12-1 | GIF version |
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
tz6.12-1 | ⊢ ((AFB ∧ ∃!y AFy) → (F ‘A) = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . 3 ⊢ Ⅎx AFy | |
2 | nfv 1619 | . . 3 ⊢ Ⅎy AFx | |
3 | breq2 4644 | . . 3 ⊢ (y = x → (AFy ↔ AFx)) | |
4 | 1, 2, 3 | cbveu 2224 | . 2 ⊢ (∃!y AFy ↔ ∃!x AFx) |
5 | df-fv 4796 | . . 3 ⊢ (F ‘A) = (℩xAFx) | |
6 | brrelrnex 4692 | . . . . 5 ⊢ (AFB → B ∈ V) | |
7 | 6 | adantr 451 | . . . 4 ⊢ ((AFB ∧ ∃!x AFx) → B ∈ V) |
8 | breq2 4644 | . . . . . . . . 9 ⊢ (x = B → (AFx ↔ AFB)) | |
9 | 8 | iota2 4368 | . . . . . . . 8 ⊢ ((B ∈ V ∧ ∃!x AFx) → (AFB ↔ (℩xAFx) = B)) |
10 | 9 | biimpd 198 | . . . . . . 7 ⊢ ((B ∈ V ∧ ∃!x AFx) → (AFB → (℩xAFx) = B)) |
11 | 10 | ex 423 | . . . . . 6 ⊢ (B ∈ V → (∃!x AFx → (AFB → (℩xAFx) = B))) |
12 | 11 | com23 72 | . . . . 5 ⊢ (B ∈ V → (AFB → (∃!x AFx → (℩xAFx) = B))) |
13 | 12 | imp3a 420 | . . . 4 ⊢ (B ∈ V → ((AFB ∧ ∃!x AFx) → (℩xAFx) = B)) |
14 | 7, 13 | mpcom 32 | . . 3 ⊢ ((AFB ∧ ∃!x AFx) → (℩xAFx) = B) |
15 | 5, 14 | syl5eq 2397 | . 2 ⊢ ((AFB ∧ ∃!x AFx) → (F ‘A) = B) |
16 | 4, 15 | sylan2b 461 | 1 ⊢ ((AFB ∧ ∃!y AFy) → (F ‘A) = B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 Vcvv 2860 ℩cio 4338 class class class wbr 4640 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-br 4641 df-fv 4796 |
This theorem is referenced by: tz6.12 5346 tz6.12c 5348 funbrfv 5357 fvfullfunlem3 5864 |
Copyright terms: Public domain | W3C validator |