| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cbvralsv | GIF version | ||
| Description: Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| cbvralsv | ⊢ (∀x ∈ A φ ↔ ∀y ∈ A [y / x]φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1619 | . . 3 ⊢ Ⅎzφ | |
| 2 | nfs1v 2106 | . . 3 ⊢ Ⅎx[z / x]φ | |
| 3 | sbequ12 1919 | . . 3 ⊢ (x = z → (φ ↔ [z / x]φ)) | |
| 4 | 1, 2, 3 | cbvral 2832 | . 2 ⊢ (∀x ∈ A φ ↔ ∀z ∈ A [z / x]φ) |
| 5 | nfv 1619 | . . . 4 ⊢ Ⅎyφ | |
| 6 | 5 | nfsb 2109 | . . 3 ⊢ Ⅎy[z / x]φ |
| 7 | nfv 1619 | . . 3 ⊢ Ⅎz[y / x]φ | |
| 8 | sbequ 2060 | . . 3 ⊢ (z = y → ([z / x]φ ↔ [y / x]φ)) | |
| 9 | 6, 7, 8 | cbvral 2832 | . 2 ⊢ (∀z ∈ A [z / x]φ ↔ ∀y ∈ A [y / x]φ) |
| 10 | 4, 9 | bitri 240 | 1 ⊢ (∀x ∈ A φ ↔ ∀y ∈ A [y / x]φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 [wsb 1648 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 |
| This theorem is referenced by: sbralie 2849 rspsbc 3125 ralxpf 4828 |
| Copyright terms: Public domain | W3C validator |