New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvrexf | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) |
Ref | Expression |
---|---|
cbvralf.1 | ⊢ ℲxA |
cbvralf.2 | ⊢ ℲyA |
cbvralf.3 | ⊢ Ⅎyφ |
cbvralf.4 | ⊢ Ⅎxψ |
cbvralf.5 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvrexf | ⊢ (∃x ∈ A φ ↔ ∃y ∈ A ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralf.1 | . . . 4 ⊢ ℲxA | |
2 | cbvralf.2 | . . . 4 ⊢ ℲyA | |
3 | cbvralf.3 | . . . . 5 ⊢ Ⅎyφ | |
4 | 3 | nfn 1793 | . . . 4 ⊢ Ⅎy ¬ φ |
5 | cbvralf.4 | . . . . 5 ⊢ Ⅎxψ | |
6 | 5 | nfn 1793 | . . . 4 ⊢ Ⅎx ¬ ψ |
7 | cbvralf.5 | . . . . 5 ⊢ (x = y → (φ ↔ ψ)) | |
8 | 7 | notbid 285 | . . . 4 ⊢ (x = y → (¬ φ ↔ ¬ ψ)) |
9 | 1, 2, 4, 6, 8 | cbvralf 2830 | . . 3 ⊢ (∀x ∈ A ¬ φ ↔ ∀y ∈ A ¬ ψ) |
10 | 9 | notbii 287 | . 2 ⊢ (¬ ∀x ∈ A ¬ φ ↔ ¬ ∀y ∈ A ¬ ψ) |
11 | dfrex2 2628 | . 2 ⊢ (∃x ∈ A φ ↔ ¬ ∀x ∈ A ¬ φ) | |
12 | dfrex2 2628 | . 2 ⊢ (∃y ∈ A ψ ↔ ¬ ∀y ∈ A ¬ ψ) | |
13 | 10, 11, 12 | 3bitr4i 268 | 1 ⊢ (∃x ∈ A φ ↔ ∃y ∈ A ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 Ⅎwnf 1544 = wceq 1642 Ⅎwnfc 2477 ∀wral 2615 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 |
This theorem is referenced by: cbvrex 2833 |
Copyright terms: Public domain | W3C validator |